( - 5 ) ^ { 3 } \times ( - \frac { 1 } { 5 } ) ^ { 2 } \quad \text { (ii) } ( \frac { 15 } { 16 } ) ^ { 3 } \div ( \frac { 9 } { 8 } ) ^ { 2 }
Evaluate
\frac{625}{192}\approx 3.255208333
Real Part
\frac{625}{192} = 3\frac{49}{192} = 3.2552083333333335
Share
Copied to clipboard
\frac{-125\left(-\frac{1}{5}\right)^{2}ii\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}}
Calculate -5 to the power of 3 and get -125.
\frac{-125\times \left(\frac{1}{25}i\right)i\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}}
Calculate -\frac{1}{5} to the power of 2 and get \frac{1}{25}.
\frac{-5ii\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}}
Multiply -125 and \frac{1}{25}i to get -5i.
\frac{5\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}}
Multiply -5i and i to get 5.
\frac{5\times \frac{3375}{4096}}{\left(\frac{9}{8}\right)^{2}}
Calculate \frac{15}{16} to the power of 3 and get \frac{3375}{4096}.
\frac{\frac{5\times 3375}{4096}}{\left(\frac{9}{8}\right)^{2}}
Express 5\times \frac{3375}{4096} as a single fraction.
\frac{\frac{16875}{4096}}{\left(\frac{9}{8}\right)^{2}}
Multiply 5 and 3375 to get 16875.
\frac{\frac{16875}{4096}}{\frac{81}{64}}
Calculate \frac{9}{8} to the power of 2 and get \frac{81}{64}.
\frac{16875}{4096}\times \frac{64}{81}
Divide \frac{16875}{4096} by \frac{81}{64} by multiplying \frac{16875}{4096} by the reciprocal of \frac{81}{64}.
\frac{16875\times 64}{4096\times 81}
Multiply \frac{16875}{4096} times \frac{64}{81} by multiplying numerator times numerator and denominator times denominator.
\frac{1080000}{331776}
Do the multiplications in the fraction \frac{16875\times 64}{4096\times 81}.
\frac{625}{192}
Reduce the fraction \frac{1080000}{331776} to lowest terms by extracting and canceling out 1728.
Re(\frac{-125\left(-\frac{1}{5}\right)^{2}ii\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}})
Calculate -5 to the power of 3 and get -125.
Re(\frac{-125\times \left(\frac{1}{25}i\right)i\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}})
Calculate -\frac{1}{5} to the power of 2 and get \frac{1}{25}.
Re(\frac{-5ii\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}})
Multiply -125 and \frac{1}{25}i to get -5i.
Re(\frac{5\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}})
Multiply -5i and i to get 5.
Re(\frac{5\times \frac{3375}{4096}}{\left(\frac{9}{8}\right)^{2}})
Calculate \frac{15}{16} to the power of 3 and get \frac{3375}{4096}.
Re(\frac{\frac{5\times 3375}{4096}}{\left(\frac{9}{8}\right)^{2}})
Express 5\times \frac{3375}{4096} as a single fraction.
Re(\frac{\frac{16875}{4096}}{\left(\frac{9}{8}\right)^{2}})
Multiply 5 and 3375 to get 16875.
Re(\frac{\frac{16875}{4096}}{\frac{81}{64}})
Calculate \frac{9}{8} to the power of 2 and get \frac{81}{64}.
Re(\frac{16875}{4096}\times \frac{64}{81})
Divide \frac{16875}{4096} by \frac{81}{64} by multiplying \frac{16875}{4096} by the reciprocal of \frac{81}{64}.
Re(\frac{16875\times 64}{4096\times 81})
Multiply \frac{16875}{4096} times \frac{64}{81} by multiplying numerator times numerator and denominator times denominator.
Re(\frac{1080000}{331776})
Do the multiplications in the fraction \frac{16875\times 64}{4096\times 81}.
Re(\frac{625}{192})
Reduce the fraction \frac{1080000}{331776} to lowest terms by extracting and canceling out 1728.
\frac{625}{192}
The real part of \frac{625}{192} is \frac{625}{192}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}