Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-125\left(-\frac{1}{5}\right)^{2}ii\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}}
Calculate -5 to the power of 3 and get -125.
\frac{-125\times \left(\frac{1}{25}i\right)i\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}}
Calculate -\frac{1}{5} to the power of 2 and get \frac{1}{25}.
\frac{-5ii\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}}
Multiply -125 and \frac{1}{25}i to get -5i.
\frac{5\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}}
Multiply -5i and i to get 5.
\frac{5\times \frac{3375}{4096}}{\left(\frac{9}{8}\right)^{2}}
Calculate \frac{15}{16} to the power of 3 and get \frac{3375}{4096}.
\frac{\frac{5\times 3375}{4096}}{\left(\frac{9}{8}\right)^{2}}
Express 5\times \frac{3375}{4096} as a single fraction.
\frac{\frac{16875}{4096}}{\left(\frac{9}{8}\right)^{2}}
Multiply 5 and 3375 to get 16875.
\frac{\frac{16875}{4096}}{\frac{81}{64}}
Calculate \frac{9}{8} to the power of 2 and get \frac{81}{64}.
\frac{16875}{4096}\times \frac{64}{81}
Divide \frac{16875}{4096} by \frac{81}{64} by multiplying \frac{16875}{4096} by the reciprocal of \frac{81}{64}.
\frac{16875\times 64}{4096\times 81}
Multiply \frac{16875}{4096} times \frac{64}{81} by multiplying numerator times numerator and denominator times denominator.
\frac{1080000}{331776}
Do the multiplications in the fraction \frac{16875\times 64}{4096\times 81}.
\frac{625}{192}
Reduce the fraction \frac{1080000}{331776} to lowest terms by extracting and canceling out 1728.
Re(\frac{-125\left(-\frac{1}{5}\right)^{2}ii\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}})
Calculate -5 to the power of 3 and get -125.
Re(\frac{-125\times \left(\frac{1}{25}i\right)i\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}})
Calculate -\frac{1}{5} to the power of 2 and get \frac{1}{25}.
Re(\frac{-5ii\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}})
Multiply -125 and \frac{1}{25}i to get -5i.
Re(\frac{5\times \left(\frac{15}{16}\right)^{3}}{\left(\frac{9}{8}\right)^{2}})
Multiply -5i and i to get 5.
Re(\frac{5\times \frac{3375}{4096}}{\left(\frac{9}{8}\right)^{2}})
Calculate \frac{15}{16} to the power of 3 and get \frac{3375}{4096}.
Re(\frac{\frac{5\times 3375}{4096}}{\left(\frac{9}{8}\right)^{2}})
Express 5\times \frac{3375}{4096} as a single fraction.
Re(\frac{\frac{16875}{4096}}{\left(\frac{9}{8}\right)^{2}})
Multiply 5 and 3375 to get 16875.
Re(\frac{\frac{16875}{4096}}{\frac{81}{64}})
Calculate \frac{9}{8} to the power of 2 and get \frac{81}{64}.
Re(\frac{16875}{4096}\times \frac{64}{81})
Divide \frac{16875}{4096} by \frac{81}{64} by multiplying \frac{16875}{4096} by the reciprocal of \frac{81}{64}.
Re(\frac{16875\times 64}{4096\times 81})
Multiply \frac{16875}{4096} times \frac{64}{81} by multiplying numerator times numerator and denominator times denominator.
Re(\frac{1080000}{331776})
Do the multiplications in the fraction \frac{16875\times 64}{4096\times 81}.
Re(\frac{625}{192})
Reduce the fraction \frac{1080000}{331776} to lowest terms by extracting and canceling out 1728.
\frac{625}{192}
The real part of \frac{625}{192} is \frac{625}{192}.