Evaluate
2x^{2}-17x+60
Expand
2x^{2}-17x+60
Graph
Share
Copied to clipboard
25-\left(x-5\right)\left(7-2x\right)
Calculate -5 to the power of 2 and get 25.
25-\left(7x-2x^{2}-35+10x\right)
Apply the distributive property by multiplying each term of x-5 by each term of 7-2x.
25-\left(17x-2x^{2}-35\right)
Combine 7x and 10x to get 17x.
25-17x-\left(-2x^{2}\right)-\left(-35\right)
To find the opposite of 17x-2x^{2}-35, find the opposite of each term.
25-17x+2x^{2}-\left(-35\right)
The opposite of -2x^{2} is 2x^{2}.
25-17x+2x^{2}+35
The opposite of -35 is 35.
60-17x+2x^{2}
Add 25 and 35 to get 60.
25-\left(x-5\right)\left(7-2x\right)
Calculate -5 to the power of 2 and get 25.
25-\left(7x-2x^{2}-35+10x\right)
Apply the distributive property by multiplying each term of x-5 by each term of 7-2x.
25-\left(17x-2x^{2}-35\right)
Combine 7x and 10x to get 17x.
25-17x-\left(-2x^{2}\right)-\left(-35\right)
To find the opposite of 17x-2x^{2}-35, find the opposite of each term.
25-17x+2x^{2}-\left(-35\right)
The opposite of -2x^{2} is 2x^{2}.
25-17x+2x^{2}+35
The opposite of -35 is 35.
60-17x+2x^{2}
Add 25 and 35 to get 60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}