Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+40x+25=\left(-2x+3\right)\left(-2x-3\right)-2\left(2x+3\right)\left(-3x+5\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4x-5\right)^{2}.
16x^{2}+40x+25=\left(-2x\right)^{2}-9-2\left(2x+3\right)\left(-3x+5\right)
Consider \left(-2x+3\right)\left(-2x-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
16x^{2}+40x+25=\left(-2\right)^{2}x^{2}-9-2\left(2x+3\right)\left(-3x+5\right)
Expand \left(-2x\right)^{2}.
16x^{2}+40x+25=4x^{2}-9-2\left(2x+3\right)\left(-3x+5\right)
Calculate -2 to the power of 2 and get 4.
16x^{2}+40x+25+2\left(2x+3\right)\left(-3x+5\right)=4x^{2}-9
Add 2\left(2x+3\right)\left(-3x+5\right) to both sides.
16x^{2}+40x+25+\left(4x+6\right)\left(-3x+5\right)=4x^{2}-9
Use the distributive property to multiply 2 by 2x+3.
16x^{2}+40x+25-12x^{2}+2x+30=4x^{2}-9
Use the distributive property to multiply 4x+6 by -3x+5 and combine like terms.
4x^{2}+40x+25+2x+30=4x^{2}-9
Combine 16x^{2} and -12x^{2} to get 4x^{2}.
4x^{2}+42x+25+30=4x^{2}-9
Combine 40x and 2x to get 42x.
4x^{2}+42x+55=4x^{2}-9
Add 25 and 30 to get 55.
4x^{2}+42x+55-4x^{2}=-9
Subtract 4x^{2} from both sides.
42x+55=-9
Combine 4x^{2} and -4x^{2} to get 0.
42x=-9-55
Subtract 55 from both sides.
42x=-64
Subtract 55 from -9 to get -64.
x=\frac{-64}{42}
Divide both sides by 42.
x=-\frac{32}{21}
Reduce the fraction \frac{-64}{42} to lowest terms by extracting and canceling out 2.