Solve for x
x = -\frac{\sqrt{21}}{4} \approx -1.145643924
x = \frac{\sqrt{21}}{4} \approx 1.145643924
Graph
Share
Copied to clipboard
16x^{2}+16x+4+\left(2-4x\right)^{2}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4x-2\right)^{2}.
16x^{2}+16x+4+4-16x+16x^{2}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-4x\right)^{2}.
16x^{2}+16x+8-16x+16x^{2}=50
Add 4 and 4 to get 8.
16x^{2}+8+16x^{2}=50
Combine 16x and -16x to get 0.
32x^{2}+8=50
Combine 16x^{2} and 16x^{2} to get 32x^{2}.
32x^{2}=50-8
Subtract 8 from both sides.
32x^{2}=42
Subtract 8 from 50 to get 42.
x^{2}=\frac{42}{32}
Divide both sides by 32.
x^{2}=\frac{21}{16}
Reduce the fraction \frac{42}{32} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{21}}{4} x=-\frac{\sqrt{21}}{4}
Take the square root of both sides of the equation.
16x^{2}+16x+4+\left(2-4x\right)^{2}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4x-2\right)^{2}.
16x^{2}+16x+4+4-16x+16x^{2}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-4x\right)^{2}.
16x^{2}+16x+8-16x+16x^{2}=50
Add 4 and 4 to get 8.
16x^{2}+8+16x^{2}=50
Combine 16x and -16x to get 0.
32x^{2}+8=50
Combine 16x^{2} and 16x^{2} to get 32x^{2}.
32x^{2}+8-50=0
Subtract 50 from both sides.
32x^{2}-42=0
Subtract 50 from 8 to get -42.
x=\frac{0±\sqrt{0^{2}-4\times 32\left(-42\right)}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 32 for a, 0 for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 32\left(-42\right)}}{2\times 32}
Square 0.
x=\frac{0±\sqrt{-128\left(-42\right)}}{2\times 32}
Multiply -4 times 32.
x=\frac{0±\sqrt{5376}}{2\times 32}
Multiply -128 times -42.
x=\frac{0±16\sqrt{21}}{2\times 32}
Take the square root of 5376.
x=\frac{0±16\sqrt{21}}{64}
Multiply 2 times 32.
x=\frac{\sqrt{21}}{4}
Now solve the equation x=\frac{0±16\sqrt{21}}{64} when ± is plus.
x=-\frac{\sqrt{21}}{4}
Now solve the equation x=\frac{0±16\sqrt{21}}{64} when ± is minus.
x=\frac{\sqrt{21}}{4} x=-\frac{\sqrt{21}}{4}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}