Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+16x+4+\left(2-4x\right)^{2}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4x-2\right)^{2}.
16x^{2}+16x+4+4-16x+16x^{2}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-4x\right)^{2}.
16x^{2}+16x+8-16x+16x^{2}=50
Add 4 and 4 to get 8.
16x^{2}+8+16x^{2}=50
Combine 16x and -16x to get 0.
32x^{2}+8=50
Combine 16x^{2} and 16x^{2} to get 32x^{2}.
32x^{2}=50-8
Subtract 8 from both sides.
32x^{2}=42
Subtract 8 from 50 to get 42.
x^{2}=\frac{42}{32}
Divide both sides by 32.
x^{2}=\frac{21}{16}
Reduce the fraction \frac{42}{32} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{21}}{4} x=-\frac{\sqrt{21}}{4}
Take the square root of both sides of the equation.
16x^{2}+16x+4+\left(2-4x\right)^{2}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4x-2\right)^{2}.
16x^{2}+16x+4+4-16x+16x^{2}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-4x\right)^{2}.
16x^{2}+16x+8-16x+16x^{2}=50
Add 4 and 4 to get 8.
16x^{2}+8+16x^{2}=50
Combine 16x and -16x to get 0.
32x^{2}+8=50
Combine 16x^{2} and 16x^{2} to get 32x^{2}.
32x^{2}+8-50=0
Subtract 50 from both sides.
32x^{2}-42=0
Subtract 50 from 8 to get -42.
x=\frac{0±\sqrt{0^{2}-4\times 32\left(-42\right)}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 32 for a, 0 for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 32\left(-42\right)}}{2\times 32}
Square 0.
x=\frac{0±\sqrt{-128\left(-42\right)}}{2\times 32}
Multiply -4 times 32.
x=\frac{0±\sqrt{5376}}{2\times 32}
Multiply -128 times -42.
x=\frac{0±16\sqrt{21}}{2\times 32}
Take the square root of 5376.
x=\frac{0±16\sqrt{21}}{64}
Multiply 2 times 32.
x=\frac{\sqrt{21}}{4}
Now solve the equation x=\frac{0±16\sqrt{21}}{64} when ± is plus.
x=-\frac{\sqrt{21}}{4}
Now solve the equation x=\frac{0±16\sqrt{21}}{64} when ± is minus.
x=\frac{\sqrt{21}}{4} x=-\frac{\sqrt{21}}{4}
The equation is now solved.