Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x^{2}+9x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\left(-4\right)\times 5}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\left(-4\right)\times 5}}{2\left(-4\right)}
Square 9.
x=\frac{-9±\sqrt{81+16\times 5}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-9±\sqrt{81+80}}{2\left(-4\right)}
Multiply 16 times 5.
x=\frac{-9±\sqrt{161}}{2\left(-4\right)}
Add 81 to 80.
x=\frac{-9±\sqrt{161}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{161}-9}{-8}
Now solve the equation x=\frac{-9±\sqrt{161}}{-8} when ± is plus. Add -9 to \sqrt{161}.
x=\frac{9-\sqrt{161}}{8}
Divide -9+\sqrt{161} by -8.
x=\frac{-\sqrt{161}-9}{-8}
Now solve the equation x=\frac{-9±\sqrt{161}}{-8} when ± is minus. Subtract \sqrt{161} from -9.
x=\frac{\sqrt{161}+9}{8}
Divide -9-\sqrt{161} by -8.
-4x^{2}+9x+5=-4\left(x-\frac{9-\sqrt{161}}{8}\right)\left(x-\frac{\sqrt{161}+9}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9-\sqrt{161}}{8} for x_{1} and \frac{9+\sqrt{161}}{8} for x_{2}.