Evaluate
16x^{6}
Differentiate w.r.t. x
96x^{5}
Graph
Share
Copied to clipboard
\left(-4x^{-3}\right)^{0}\left(-4x^{3}\right)^{2}
Use the rules of exponents to simplify the expression.
\left(-4\right)^{0}\left(x^{-3}\right)^{0}\left(-4\right)^{2}\left(x^{3}\right)^{2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-4\right)^{0}\left(-4\right)^{2}\left(x^{-3}\right)^{0}\left(x^{3}\right)^{2}
Use the Commutative Property of Multiplication.
\left(-4\right)^{0}\left(-4\right)^{2}x^{0}x^{3\times 2}
To raise a power to another power, multiply the exponents.
\left(-4\right)^{0}\left(-4\right)^{2}x^{0}x^{6}
Multiply 3 times 2.
\left(-4\right)^{0}\left(-4\right)^{2}x^{6}
To multiply powers of the same base, add their exponents.
\left(-4\right)^{2}x^{6}
To multiply powers of the same base, add their exponents.
\frac{\mathrm{d}}{\mathrm{d}x}(1\left(-4x^{3}\right)^{2})
Calculate -4x^{-3} to the power of 0 and get 1.
\frac{\mathrm{d}}{\mathrm{d}x}(1\left(-4\right)^{2}\left(x^{3}\right)^{2})
Expand \left(-4x^{3}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(1\left(-4\right)^{2}x^{6})
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(1\times 16x^{6})
Calculate -4 to the power of 2 and get 16.
\frac{\mathrm{d}}{\mathrm{d}x}(16x^{6})
Multiply 1 and 16 to get 16.
6\times 16x^{6-1}
The derivative of ax^{n} is nax^{n-1}.
96x^{6-1}
Multiply 6 times 16.
96x^{5}
Subtract 1 from 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}