Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-4x^{-3}\right)^{0}\left(-4x^{3}\right)^{2}
Use the rules of exponents to simplify the expression.
\left(-4\right)^{0}\left(x^{-3}\right)^{0}\left(-4\right)^{2}\left(x^{3}\right)^{2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-4\right)^{0}\left(-4\right)^{2}\left(x^{-3}\right)^{0}\left(x^{3}\right)^{2}
Use the Commutative Property of Multiplication.
\left(-4\right)^{0}\left(-4\right)^{2}x^{0}x^{3\times 2}
To raise a power to another power, multiply the exponents.
\left(-4\right)^{0}\left(-4\right)^{2}x^{0}x^{6}
Multiply 3 times 2.
\left(-4\right)^{0}\left(-4\right)^{2}x^{6}
To multiply powers of the same base, add their exponents.
\left(-4\right)^{2}x^{6}
To multiply powers of the same base, add their exponents.
\frac{\mathrm{d}}{\mathrm{d}x}(1\left(-4x^{3}\right)^{2})
Calculate -4x^{-3} to the power of 0 and get 1.
\frac{\mathrm{d}}{\mathrm{d}x}(1\left(-4\right)^{2}\left(x^{3}\right)^{2})
Expand \left(-4x^{3}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(1\left(-4\right)^{2}x^{6})
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\mathrm{d}}{\mathrm{d}x}(1\times 16x^{6})
Calculate -4 to the power of 2 and get 16.
\frac{\mathrm{d}}{\mathrm{d}x}(16x^{6})
Multiply 1 and 16 to get 16.
6\times 16x^{6-1}
The derivative of ax^{n} is nax^{n-1}.
96x^{6-1}
Multiply 6 times 16.
96x^{5}
Subtract 1 from 6.