Solve for m_1
m_{1}=2
m_{1}=-\frac{1}{2}=-0.5
Share
Copied to clipboard
16m_{1}^{2}+96m_{1}+144-4\left(1+m_{1}^{2}\right)\times 20=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4m_{1}-12\right)^{2}.
16m_{1}^{2}+96m_{1}+144-80\left(1+m_{1}^{2}\right)=0
Multiply 4 and 20 to get 80.
16m_{1}^{2}+96m_{1}+144-80-80m_{1}^{2}=0
Use the distributive property to multiply -80 by 1+m_{1}^{2}.
16m_{1}^{2}+96m_{1}+64-80m_{1}^{2}=0
Subtract 80 from 144 to get 64.
-64m_{1}^{2}+96m_{1}+64=0
Combine 16m_{1}^{2} and -80m_{1}^{2} to get -64m_{1}^{2}.
-2m_{1}^{2}+3m_{1}+2=0
Divide both sides by 32.
a+b=3 ab=-2\times 2=-4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2m_{1}^{2}+am_{1}+bm_{1}+2. To find a and b, set up a system to be solved.
-1,4 -2,2
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -4.
-1+4=3 -2+2=0
Calculate the sum for each pair.
a=4 b=-1
The solution is the pair that gives sum 3.
\left(-2m_{1}^{2}+4m_{1}\right)+\left(-m_{1}+2\right)
Rewrite -2m_{1}^{2}+3m_{1}+2 as \left(-2m_{1}^{2}+4m_{1}\right)+\left(-m_{1}+2\right).
2m_{1}\left(-m_{1}+2\right)-m_{1}+2
Factor out 2m_{1} in -2m_{1}^{2}+4m_{1}.
\left(-m_{1}+2\right)\left(2m_{1}+1\right)
Factor out common term -m_{1}+2 by using distributive property.
m_{1}=2 m_{1}=-\frac{1}{2}
To find equation solutions, solve -m_{1}+2=0 and 2m_{1}+1=0.
16m_{1}^{2}+96m_{1}+144-4\left(1+m_{1}^{2}\right)\times 20=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4m_{1}-12\right)^{2}.
16m_{1}^{2}+96m_{1}+144-80\left(1+m_{1}^{2}\right)=0
Multiply 4 and 20 to get 80.
16m_{1}^{2}+96m_{1}+144-80-80m_{1}^{2}=0
Use the distributive property to multiply -80 by 1+m_{1}^{2}.
16m_{1}^{2}+96m_{1}+64-80m_{1}^{2}=0
Subtract 80 from 144 to get 64.
-64m_{1}^{2}+96m_{1}+64=0
Combine 16m_{1}^{2} and -80m_{1}^{2} to get -64m_{1}^{2}.
m_{1}=\frac{-96±\sqrt{96^{2}-4\left(-64\right)\times 64}}{2\left(-64\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -64 for a, 96 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m_{1}=\frac{-96±\sqrt{9216-4\left(-64\right)\times 64}}{2\left(-64\right)}
Square 96.
m_{1}=\frac{-96±\sqrt{9216+256\times 64}}{2\left(-64\right)}
Multiply -4 times -64.
m_{1}=\frac{-96±\sqrt{9216+16384}}{2\left(-64\right)}
Multiply 256 times 64.
m_{1}=\frac{-96±\sqrt{25600}}{2\left(-64\right)}
Add 9216 to 16384.
m_{1}=\frac{-96±160}{2\left(-64\right)}
Take the square root of 25600.
m_{1}=\frac{-96±160}{-128}
Multiply 2 times -64.
m_{1}=\frac{64}{-128}
Now solve the equation m_{1}=\frac{-96±160}{-128} when ± is plus. Add -96 to 160.
m_{1}=-\frac{1}{2}
Reduce the fraction \frac{64}{-128} to lowest terms by extracting and canceling out 64.
m_{1}=-\frac{256}{-128}
Now solve the equation m_{1}=\frac{-96±160}{-128} when ± is minus. Subtract 160 from -96.
m_{1}=2
Divide -256 by -128.
m_{1}=-\frac{1}{2} m_{1}=2
The equation is now solved.
16m_{1}^{2}+96m_{1}+144-4\left(1+m_{1}^{2}\right)\times 20=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4m_{1}-12\right)^{2}.
16m_{1}^{2}+96m_{1}+144-80\left(1+m_{1}^{2}\right)=0
Multiply 4 and 20 to get 80.
16m_{1}^{2}+96m_{1}+144-80-80m_{1}^{2}=0
Use the distributive property to multiply -80 by 1+m_{1}^{2}.
16m_{1}^{2}+96m_{1}+64-80m_{1}^{2}=0
Subtract 80 from 144 to get 64.
-64m_{1}^{2}+96m_{1}+64=0
Combine 16m_{1}^{2} and -80m_{1}^{2} to get -64m_{1}^{2}.
-64m_{1}^{2}+96m_{1}=-64
Subtract 64 from both sides. Anything subtracted from zero gives its negation.
\frac{-64m_{1}^{2}+96m_{1}}{-64}=-\frac{64}{-64}
Divide both sides by -64.
m_{1}^{2}+\frac{96}{-64}m_{1}=-\frac{64}{-64}
Dividing by -64 undoes the multiplication by -64.
m_{1}^{2}-\frac{3}{2}m_{1}=-\frac{64}{-64}
Reduce the fraction \frac{96}{-64} to lowest terms by extracting and canceling out 32.
m_{1}^{2}-\frac{3}{2}m_{1}=1
Divide -64 by -64.
m_{1}^{2}-\frac{3}{2}m_{1}+\left(-\frac{3}{4}\right)^{2}=1+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m_{1}^{2}-\frac{3}{2}m_{1}+\frac{9}{16}=1+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
m_{1}^{2}-\frac{3}{2}m_{1}+\frac{9}{16}=\frac{25}{16}
Add 1 to \frac{9}{16}.
\left(m_{1}-\frac{3}{4}\right)^{2}=\frac{25}{16}
Factor m_{1}^{2}-\frac{3}{2}m_{1}+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m_{1}-\frac{3}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
m_{1}-\frac{3}{4}=\frac{5}{4} m_{1}-\frac{3}{4}=-\frac{5}{4}
Simplify.
m_{1}=2 m_{1}=-\frac{1}{2}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}