Evaluate
2g^{2}+5g-2
Factor
2\left(g-\frac{-\sqrt{41}-5}{4}\right)\left(g-\frac{\sqrt{41}-5}{4}\right)
Share
Copied to clipboard
-4g-2+2g^{2}+9g
Combine -g^{2} and 3g^{2} to get 2g^{2}.
5g-2+2g^{2}
Combine -4g and 9g to get 5g.
factor(-4g-2+2g^{2}+9g)
Combine -g^{2} and 3g^{2} to get 2g^{2}.
factor(5g-2+2g^{2})
Combine -4g and 9g to get 5g.
2g^{2}+5g-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
g=\frac{-5±\sqrt{5^{2}-4\times 2\left(-2\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
g=\frac{-5±\sqrt{25-4\times 2\left(-2\right)}}{2\times 2}
Square 5.
g=\frac{-5±\sqrt{25-8\left(-2\right)}}{2\times 2}
Multiply -4 times 2.
g=\frac{-5±\sqrt{25+16}}{2\times 2}
Multiply -8 times -2.
g=\frac{-5±\sqrt{41}}{2\times 2}
Add 25 to 16.
g=\frac{-5±\sqrt{41}}{4}
Multiply 2 times 2.
g=\frac{\sqrt{41}-5}{4}
Now solve the equation g=\frac{-5±\sqrt{41}}{4} when ± is plus. Add -5 to \sqrt{41}.
g=\frac{-\sqrt{41}-5}{4}
Now solve the equation g=\frac{-5±\sqrt{41}}{4} when ± is minus. Subtract \sqrt{41} from -5.
2g^{2}+5g-2=2\left(g-\frac{\sqrt{41}-5}{4}\right)\left(g-\frac{-\sqrt{41}-5}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{41}}{4} for x_{1} and \frac{-5-\sqrt{41}}{4} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}