Solve for a
a=-2
Share
Copied to clipboard
16+8a+a^{2}+\left(5+a-5\right)^{2}=a^{2}+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-4-a\right)^{2}.
16+8a+a^{2}+a^{2}=a^{2}+a^{2}
Subtract 5 from 5 to get 0.
16+8a+2a^{2}=a^{2}+a^{2}
Combine a^{2} and a^{2} to get 2a^{2}.
16+8a+2a^{2}=2a^{2}
Combine a^{2} and a^{2} to get 2a^{2}.
16+8a+2a^{2}-2a^{2}=0
Subtract 2a^{2} from both sides.
16+8a=0
Combine 2a^{2} and -2a^{2} to get 0.
8a=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
a=\frac{-16}{8}
Divide both sides by 8.
a=-2
Divide -16 by 8 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}