Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

-4\times \frac{12y_{0}-\left(27y_{0}+4y_{0}^{2}\right)}{27-4\left(27+4y_{0}^{2}\right)}+y_{0}
Use the distributive property to multiply 27+4y_{0} by y_{0}.
-4\times \frac{12y_{0}-27y_{0}-4y_{0}^{2}}{27-4\left(27+4y_{0}^{2}\right)}+y_{0}
To find the opposite of 27y_{0}+4y_{0}^{2}, find the opposite of each term.
-4\times \frac{-15y_{0}-4y_{0}^{2}}{27-4\left(27+4y_{0}^{2}\right)}+y_{0}
Combine 12y_{0} and -27y_{0} to get -15y_{0}.
-4\times \frac{-15y_{0}-4y_{0}^{2}}{27-108-16y_{0}^{2}}+y_{0}
Use the distributive property to multiply -4 by 27+4y_{0}^{2}.
-4\times \frac{-15y_{0}-4y_{0}^{2}}{-81-16y_{0}^{2}}+y_{0}
Subtract 108 from 27 to get -81.
\frac{-4\left(-15y_{0}-4y_{0}^{2}\right)}{-81-16y_{0}^{2}}+y_{0}
Express -4\times \frac{-15y_{0}-4y_{0}^{2}}{-81-16y_{0}^{2}} as a single fraction.
\frac{-4\left(-15y_{0}-4y_{0}^{2}\right)}{-81-16y_{0}^{2}}+\frac{y_{0}\left(-81-16y_{0}^{2}\right)}{-81-16y_{0}^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y_{0} times \frac{-81-16y_{0}^{2}}{-81-16y_{0}^{2}}.
\frac{-4\left(-15y_{0}-4y_{0}^{2}\right)+y_{0}\left(-81-16y_{0}^{2}\right)}{-81-16y_{0}^{2}}
Since \frac{-4\left(-15y_{0}-4y_{0}^{2}\right)}{-81-16y_{0}^{2}} and \frac{y_{0}\left(-81-16y_{0}^{2}\right)}{-81-16y_{0}^{2}} have the same denominator, add them by adding their numerators.
\frac{60y_{0}+16y_{0}^{2}-81y_{0}-16y_{0}^{3}}{-81-16y_{0}^{2}}
Do the multiplications in -4\left(-15y_{0}-4y_{0}^{2}\right)+y_{0}\left(-81-16y_{0}^{2}\right).
\frac{-21y_{0}+16y_{0}^{2}-16y_{0}^{3}}{-81-16y_{0}^{2}}
Combine like terms in 60y_{0}+16y_{0}^{2}-81y_{0}-16y_{0}^{3}.
-4\times \frac{12y_{0}-\left(27y_{0}+4y_{0}^{2}\right)}{27-4\left(27+4y_{0}^{2}\right)}+y_{0}
Use the distributive property to multiply 27+4y_{0} by y_{0}.
-4\times \frac{12y_{0}-27y_{0}-4y_{0}^{2}}{27-4\left(27+4y_{0}^{2}\right)}+y_{0}
To find the opposite of 27y_{0}+4y_{0}^{2}, find the opposite of each term.
-4\times \frac{-15y_{0}-4y_{0}^{2}}{27-4\left(27+4y_{0}^{2}\right)}+y_{0}
Combine 12y_{0} and -27y_{0} to get -15y_{0}.
-4\times \frac{-15y_{0}-4y_{0}^{2}}{27-108-16y_{0}^{2}}+y_{0}
Use the distributive property to multiply -4 by 27+4y_{0}^{2}.
-4\times \frac{-15y_{0}-4y_{0}^{2}}{-81-16y_{0}^{2}}+y_{0}
Subtract 108 from 27 to get -81.
\frac{-4\left(-15y_{0}-4y_{0}^{2}\right)}{-81-16y_{0}^{2}}+y_{0}
Express -4\times \frac{-15y_{0}-4y_{0}^{2}}{-81-16y_{0}^{2}} as a single fraction.
\frac{-4\left(-15y_{0}-4y_{0}^{2}\right)}{-81-16y_{0}^{2}}+\frac{y_{0}\left(-81-16y_{0}^{2}\right)}{-81-16y_{0}^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y_{0} times \frac{-81-16y_{0}^{2}}{-81-16y_{0}^{2}}.
\frac{-4\left(-15y_{0}-4y_{0}^{2}\right)+y_{0}\left(-81-16y_{0}^{2}\right)}{-81-16y_{0}^{2}}
Since \frac{-4\left(-15y_{0}-4y_{0}^{2}\right)}{-81-16y_{0}^{2}} and \frac{y_{0}\left(-81-16y_{0}^{2}\right)}{-81-16y_{0}^{2}} have the same denominator, add them by adding their numerators.
\frac{60y_{0}+16y_{0}^{2}-81y_{0}-16y_{0}^{3}}{-81-16y_{0}^{2}}
Do the multiplications in -4\left(-15y_{0}-4y_{0}^{2}\right)+y_{0}\left(-81-16y_{0}^{2}\right).
\frac{-21y_{0}+16y_{0}^{2}-16y_{0}^{3}}{-81-16y_{0}^{2}}
Combine like terms in 60y_{0}+16y_{0}^{2}-81y_{0}-16y_{0}^{3}.