Evaluate
-\frac{60y_{0}+16y_{0}^{3}-81y-16yy_{0}}{16y_{0}+81}
Expand
-\frac{60y_{0}+16y_{0}^{3}-81y-16yy_{0}}{16y_{0}+81}
Graph
Share
Copied to clipboard
-4\times \frac{12y_{0}-\left(27y_{0}+4y_{0}^{3}\right)}{27-4\left(27+4y_{0}\right)}+y
Use the distributive property to multiply 27+4y_{0}^{2} by y_{0}.
-4\times \frac{12y_{0}-27y_{0}-4y_{0}^{3}}{27-4\left(27+4y_{0}\right)}+y
To find the opposite of 27y_{0}+4y_{0}^{3}, find the opposite of each term.
-4\times \frac{-15y_{0}-4y_{0}^{3}}{27-4\left(27+4y_{0}\right)}+y
Combine 12y_{0} and -27y_{0} to get -15y_{0}.
-4\times \frac{-15y_{0}-4y_{0}^{3}}{27-108-16y_{0}}+y
Use the distributive property to multiply -4 by 27+4y_{0}.
-4\times \frac{-15y_{0}-4y_{0}^{3}}{-81-16y_{0}}+y
Subtract 108 from 27 to get -81.
\frac{-4\left(-15y_{0}-4y_{0}^{3}\right)}{-81-16y_{0}}+y
Express -4\times \frac{-15y_{0}-4y_{0}^{3}}{-81-16y_{0}} as a single fraction.
\frac{-4\left(-15y_{0}-4y_{0}^{3}\right)}{-81-16y_{0}}+\frac{y\left(-81-16y_{0}\right)}{-81-16y_{0}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{-81-16y_{0}}{-81-16y_{0}}.
\frac{-4\left(-15y_{0}-4y_{0}^{3}\right)+y\left(-81-16y_{0}\right)}{-81-16y_{0}}
Since \frac{-4\left(-15y_{0}-4y_{0}^{3}\right)}{-81-16y_{0}} and \frac{y\left(-81-16y_{0}\right)}{-81-16y_{0}} have the same denominator, add them by adding their numerators.
\frac{60y_{0}+16y_{0}^{3}-81y-16yy_{0}}{-81-16y_{0}}
Do the multiplications in -4\left(-15y_{0}-4y_{0}^{3}\right)+y\left(-81-16y_{0}\right).
-4\times \frac{12y_{0}-\left(27y_{0}+4y_{0}^{3}\right)}{27-4\left(27+4y_{0}\right)}+y
Use the distributive property to multiply 27+4y_{0}^{2} by y_{0}.
-4\times \frac{12y_{0}-27y_{0}-4y_{0}^{3}}{27-4\left(27+4y_{0}\right)}+y
To find the opposite of 27y_{0}+4y_{0}^{3}, find the opposite of each term.
-4\times \frac{-15y_{0}-4y_{0}^{3}}{27-4\left(27+4y_{0}\right)}+y
Combine 12y_{0} and -27y_{0} to get -15y_{0}.
-4\times \frac{-15y_{0}-4y_{0}^{3}}{27-108-16y_{0}}+y
Use the distributive property to multiply -4 by 27+4y_{0}.
-4\times \frac{-15y_{0}-4y_{0}^{3}}{-81-16y_{0}}+y
Subtract 108 from 27 to get -81.
\frac{-4\left(-15y_{0}-4y_{0}^{3}\right)}{-81-16y_{0}}+y
Express -4\times \frac{-15y_{0}-4y_{0}^{3}}{-81-16y_{0}} as a single fraction.
\frac{-4\left(-15y_{0}-4y_{0}^{3}\right)}{-81-16y_{0}}+\frac{y\left(-81-16y_{0}\right)}{-81-16y_{0}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{-81-16y_{0}}{-81-16y_{0}}.
\frac{-4\left(-15y_{0}-4y_{0}^{3}\right)+y\left(-81-16y_{0}\right)}{-81-16y_{0}}
Since \frac{-4\left(-15y_{0}-4y_{0}^{3}\right)}{-81-16y_{0}} and \frac{y\left(-81-16y_{0}\right)}{-81-16y_{0}} have the same denominator, add them by adding their numerators.
\frac{60y_{0}+16y_{0}^{3}-81y-16yy_{0}}{-81-16y_{0}}
Do the multiplications in -4\left(-15y_{0}-4y_{0}^{3}\right)+y\left(-81-16y_{0}\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}