Solve for x
x = \frac{17}{4} = 4\frac{1}{4} = 4.25
Graph
Share
Copied to clipboard
-24\left(-\frac{3+1}{3}\right)\left(2x-\frac{8\times 2+1}{2}\right)=0
Multiply both sides of the equation by 6, the least common multiple of 3,2.
-24\left(-\frac{4}{3}\right)\left(2x-\frac{8\times 2+1}{2}\right)=0
Add 3 and 1 to get 4.
\frac{-24\left(-4\right)}{3}\left(2x-\frac{8\times 2+1}{2}\right)=0
Express -24\left(-\frac{4}{3}\right) as a single fraction.
\frac{96}{3}\left(2x-\frac{8\times 2+1}{2}\right)=0
Multiply -24 and -4 to get 96.
32\left(2x-\frac{8\times 2+1}{2}\right)=0
Divide 96 by 3 to get 32.
32\left(2x-\frac{16+1}{2}\right)=0
Multiply 8 and 2 to get 16.
32\left(2x-\frac{17}{2}\right)=0
Add 16 and 1 to get 17.
64x+32\left(-\frac{17}{2}\right)=0
Use the distributive property to multiply 32 by 2x-\frac{17}{2}.
64x+\frac{32\left(-17\right)}{2}=0
Express 32\left(-\frac{17}{2}\right) as a single fraction.
64x+\frac{-544}{2}=0
Multiply 32 and -17 to get -544.
64x-272=0
Divide -544 by 2 to get -272.
64x=272
Add 272 to both sides. Anything plus zero gives itself.
x=\frac{272}{64}
Divide both sides by 64.
x=\frac{17}{4}
Reduce the fraction \frac{272}{64} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}