Evaluate
-7+24i
Real Part
-7
Share
Copied to clipboard
-4\times 4-4\times \left(-3i\right)+3i\times 4+3\left(-3\right)i^{2}
Multiply complex numbers -4+3i and 4-3i like you multiply binomials.
-4\times 4-4\times \left(-3i\right)+3i\times 4+3\left(-3\right)\left(-1\right)
By definition, i^{2} is -1.
-16+12i+12i+9
Do the multiplications.
-16+9+\left(12+12\right)i
Combine the real and imaginary parts.
-7+24i
Do the additions.
Re(-4\times 4-4\times \left(-3i\right)+3i\times 4+3\left(-3\right)i^{2})
Multiply complex numbers -4+3i and 4-3i like you multiply binomials.
Re(-4\times 4-4\times \left(-3i\right)+3i\times 4+3\left(-3\right)\left(-1\right))
By definition, i^{2} is -1.
Re(-16+12i+12i+9)
Do the multiplications in -4\times 4-4\times \left(-3i\right)+3i\times 4+3\left(-3\right)\left(-1\right).
Re(-16+9+\left(12+12\right)i)
Combine the real and imaginary parts in -16+12i+12i+9.
Re(-7+24i)
Do the additions in -16+9+\left(12+12\right)i.
-7
The real part of -7+24i is -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}