Evaluate
13+3i
Real Part
13
Share
Copied to clipboard
-4+3i+2\times 8+2i-i\left(2+i\right)
Multiply 2 times 8+i.
-4+3i+\left(16+2i\right)-i\left(2+i\right)
Do the multiplications in 2\times 8+2i.
-4+16+\left(3+2\right)i-i\left(2+i\right)
Combine the real and imaginary parts in -4+3i+16+2i.
12+5i-i\left(2+i\right)
Do the additions in -4+16+\left(3+2\right)i.
12+5i-\left(2i+i^{2}\right)
Multiply i times 2+i.
12+5i-\left(2i-1\right)
By definition, i^{2} is -1.
12+5i-\left(-1+2i\right)
Reorder the terms.
12-\left(-1\right)+\left(5-2\right)i
Subtract -1+2i from 12+5i by subtracting corresponding real and imaginary parts.
13+3i
Subtract -1 from 12. Subtract 2 from 5.
Re(-4+3i+2\times 8+2i-i\left(2+i\right))
Multiply 2 times 8+i.
Re(-4+3i+\left(16+2i\right)-i\left(2+i\right))
Do the multiplications in 2\times 8+2i.
Re(-4+16+\left(3+2\right)i-i\left(2+i\right))
Combine the real and imaginary parts in -4+3i+16+2i.
Re(12+5i-i\left(2+i\right))
Do the additions in -4+16+\left(3+2\right)i.
Re(12+5i-\left(2i+i^{2}\right))
Multiply i times 2+i.
Re(12+5i-\left(2i-1\right))
By definition, i^{2} is -1.
Re(12+5i-\left(-1+2i\right))
Reorder the terms.
Re(12-\left(-1\right)+\left(5-2\right)i)
Subtract -1+2i from 12+5i by subtracting corresponding real and imaginary parts.
Re(13+3i)
Subtract -1 from 12. Subtract 2 from 5.
13
The real part of 13+3i is 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}