Evaluate
\frac{2400-24l}{7}
Factor
\frac{24\left(100-l\right)}{7}
Share
Copied to clipboard
\frac{-359\left(-4\right)}{7}-241\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l
Express -359\left(-\frac{4}{7}\right) as a single fraction.
\frac{1436}{7}-241\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l
Multiply -359 and -4 to get 1436.
\frac{1436}{7}-\frac{241\left(-4\right)}{7}+6\left(-\frac{4}{7}\right)l
Express 241\left(-\frac{4}{7}\right) as a single fraction.
\frac{1436}{7}-\frac{-964}{7}+6\left(-\frac{4}{7}\right)l
Multiply 241 and -4 to get -964.
\frac{1436}{7}-\left(-\frac{964}{7}\right)+6\left(-\frac{4}{7}\right)l
Fraction \frac{-964}{7} can be rewritten as -\frac{964}{7} by extracting the negative sign.
\frac{1436}{7}+\frac{964}{7}+6\left(-\frac{4}{7}\right)l
The opposite of -\frac{964}{7} is \frac{964}{7}.
\frac{1436+964}{7}+6\left(-\frac{4}{7}\right)l
Since \frac{1436}{7} and \frac{964}{7} have the same denominator, add them by adding their numerators.
\frac{2400}{7}+6\left(-\frac{4}{7}\right)l
Add 1436 and 964 to get 2400.
\frac{2400}{7}+\frac{6\left(-4\right)}{7}l
Express 6\left(-\frac{4}{7}\right) as a single fraction.
\frac{2400}{7}+\frac{-24}{7}l
Multiply 6 and -4 to get -24.
\frac{2400}{7}-\frac{24}{7}l
Fraction \frac{-24}{7} can be rewritten as -\frac{24}{7} by extracting the negative sign.
\frac{4\left(600-6l\right)}{7}
Factor out \frac{4}{7}.
-6l+600
Consider 359+241-6l. Multiply and combine like terms.
6\left(-l+100\right)
Consider -6l+600. Factor out 6.
\frac{24\left(-l+100\right)}{7}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}