Evaluate
\frac{24-24l}{7}
Factor
\frac{24\left(1-l\right)}{7}
Share
Copied to clipboard
-\frac{359}{100}\left(-\frac{4}{7}\right)-2.41\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l
Convert decimal number -3.59 to fraction -\frac{359}{100}.
\frac{-359\left(-4\right)}{100\times 7}-2.41\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l
Multiply -\frac{359}{100} times -\frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1436}{700}-2.41\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l
Do the multiplications in the fraction \frac{-359\left(-4\right)}{100\times 7}.
\frac{359}{175}-2.41\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l
Reduce the fraction \frac{1436}{700} to lowest terms by extracting and canceling out 4.
\frac{359}{175}-\frac{241}{100}\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l
Convert decimal number 2.41 to fraction \frac{241}{100}.
\frac{359}{175}-\frac{241\left(-4\right)}{100\times 7}+6\left(-\frac{4}{7}\right)l
Multiply \frac{241}{100} times -\frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{359}{175}-\frac{-964}{700}+6\left(-\frac{4}{7}\right)l
Do the multiplications in the fraction \frac{241\left(-4\right)}{100\times 7}.
\frac{359}{175}-\left(-\frac{241}{175}\right)+6\left(-\frac{4}{7}\right)l
Reduce the fraction \frac{-964}{700} to lowest terms by extracting and canceling out 4.
\frac{359}{175}+\frac{241}{175}+6\left(-\frac{4}{7}\right)l
The opposite of -\frac{241}{175} is \frac{241}{175}.
\frac{359+241}{175}+6\left(-\frac{4}{7}\right)l
Since \frac{359}{175} and \frac{241}{175} have the same denominator, add them by adding their numerators.
\frac{600}{175}+6\left(-\frac{4}{7}\right)l
Add 359 and 241 to get 600.
\frac{24}{7}+6\left(-\frac{4}{7}\right)l
Reduce the fraction \frac{600}{175} to lowest terms by extracting and canceling out 25.
\frac{24}{7}+\frac{6\left(-4\right)}{7}l
Express 6\left(-\frac{4}{7}\right) as a single fraction.
\frac{24}{7}+\frac{-24}{7}l
Multiply 6 and -4 to get -24.
\frac{24}{7}-\frac{24}{7}l
Fraction \frac{-24}{7} can be rewritten as -\frac{24}{7} by extracting the negative sign.
factor(-\frac{359}{100}\left(-\frac{4}{7}\right)-2.41\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l)
Convert decimal number -3.59 to fraction -\frac{359}{100}.
factor(\frac{-359\left(-4\right)}{100\times 7}-2.41\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l)
Multiply -\frac{359}{100} times -\frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
factor(\frac{1436}{700}-2.41\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l)
Do the multiplications in the fraction \frac{-359\left(-4\right)}{100\times 7}.
factor(\frac{359}{175}-2.41\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l)
Reduce the fraction \frac{1436}{700} to lowest terms by extracting and canceling out 4.
factor(\frac{359}{175}-\frac{241}{100}\left(-\frac{4}{7}\right)+6\left(-\frac{4}{7}\right)l)
Convert decimal number 2.41 to fraction \frac{241}{100}.
factor(\frac{359}{175}-\frac{241\left(-4\right)}{100\times 7}+6\left(-\frac{4}{7}\right)l)
Multiply \frac{241}{100} times -\frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
factor(\frac{359}{175}-\frac{-964}{700}+6\left(-\frac{4}{7}\right)l)
Do the multiplications in the fraction \frac{241\left(-4\right)}{100\times 7}.
factor(\frac{359}{175}-\left(-\frac{241}{175}\right)+6\left(-\frac{4}{7}\right)l)
Reduce the fraction \frac{-964}{700} to lowest terms by extracting and canceling out 4.
factor(\frac{359}{175}+\frac{241}{175}+6\left(-\frac{4}{7}\right)l)
The opposite of -\frac{241}{175} is \frac{241}{175}.
factor(\frac{359+241}{175}+6\left(-\frac{4}{7}\right)l)
Since \frac{359}{175} and \frac{241}{175} have the same denominator, add them by adding their numerators.
factor(\frac{600}{175}+6\left(-\frac{4}{7}\right)l)
Add 359 and 241 to get 600.
factor(\frac{24}{7}+6\left(-\frac{4}{7}\right)l)
Reduce the fraction \frac{600}{175} to lowest terms by extracting and canceling out 25.
factor(\frac{24}{7}+\frac{6\left(-4\right)}{7}l)
Express 6\left(-\frac{4}{7}\right) as a single fraction.
factor(\frac{24}{7}+\frac{-24}{7}l)
Multiply 6 and -4 to get -24.
factor(\frac{24}{7}-\frac{24}{7}l)
Fraction \frac{-24}{7} can be rewritten as -\frac{24}{7} by extracting the negative sign.
\frac{24\left(1-l\right)}{7}
Factor out \frac{24}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}