Evaluate
\frac{x^{6}\left(yz\right)^{4}}{3}
Differentiate w.r.t. x
2x^{5}\left(yz\right)^{4}
Share
Copied to clipboard
-3x^{4}yz\left(-\frac{5}{9}\right)y^{2}z\times \frac{1}{5}x^{2}yz^{2}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
-3x^{6}yz\left(-\frac{5}{9}\right)y^{2}z\times \frac{1}{5}yz^{2}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
-3x^{6}y^{3}z\left(-\frac{5}{9}\right)z\times \frac{1}{5}yz^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-3x^{6}y^{4}z\left(-\frac{5}{9}\right)z\times \frac{1}{5}z^{2}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
-3x^{6}y^{4}z^{2}\left(-\frac{5}{9}\right)\times \frac{1}{5}z^{2}
Multiply z and z to get z^{2}.
-3x^{6}y^{4}z^{4}\left(-\frac{5}{9}\right)\times \frac{1}{5}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{5}{3}x^{6}y^{4}z^{4}\times \frac{1}{5}
Multiply -3 and -\frac{5}{9} to get \frac{5}{3}.
\frac{1}{3}x^{6}y^{4}z^{4}
Multiply \frac{5}{3} and \frac{1}{5} to get \frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}