Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-12x^{2}-9x+5+6
Combine -3x^{2} and -9x^{2} to get -12x^{2}.
-12x^{2}-9x+11
Add 5 and 6 to get 11.
factor(-12x^{2}-9x+5+6)
Combine -3x^{2} and -9x^{2} to get -12x^{2}.
factor(-12x^{2}-9x+11)
Add 5 and 6 to get 11.
-12x^{2}-9x+11=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-12\right)\times 11}}{2\left(-12\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-12\right)\times 11}}{2\left(-12\right)}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+48\times 11}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-\left(-9\right)±\sqrt{81+528}}{2\left(-12\right)}
Multiply 48 times 11.
x=\frac{-\left(-9\right)±\sqrt{609}}{2\left(-12\right)}
Add 81 to 528.
x=\frac{9±\sqrt{609}}{2\left(-12\right)}
The opposite of -9 is 9.
x=\frac{9±\sqrt{609}}{-24}
Multiply 2 times -12.
x=\frac{\sqrt{609}+9}{-24}
Now solve the equation x=\frac{9±\sqrt{609}}{-24} when ± is plus. Add 9 to \sqrt{609}.
x=-\frac{\sqrt{609}}{24}-\frac{3}{8}
Divide 9+\sqrt{609} by -24.
x=\frac{9-\sqrt{609}}{-24}
Now solve the equation x=\frac{9±\sqrt{609}}{-24} when ± is minus. Subtract \sqrt{609} from 9.
x=\frac{\sqrt{609}}{24}-\frac{3}{8}
Divide 9-\sqrt{609} by -24.
-12x^{2}-9x+11=-12\left(x-\left(-\frac{\sqrt{609}}{24}-\frac{3}{8}\right)\right)\left(x-\left(\frac{\sqrt{609}}{24}-\frac{3}{8}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{8}-\frac{\sqrt{609}}{24} for x_{1} and -\frac{3}{8}+\frac{\sqrt{609}}{24} for x_{2}.