Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-10x^{2}+2x+1-2x-3+2x^{2}-x+13
Combine -3x^{2} and -7x^{2} to get -10x^{2}.
-10x^{2}+1-3+2x^{2}-x+13
Combine 2x and -2x to get 0.
-10x^{2}-2+2x^{2}-x+13
Subtract 3 from 1 to get -2.
-8x^{2}-2-x+13
Combine -10x^{2} and 2x^{2} to get -8x^{2}.
-8x^{2}+11-x
Add -2 and 13 to get 11.
factor(-10x^{2}+2x+1-2x-3+2x^{2}-x+13)
Combine -3x^{2} and -7x^{2} to get -10x^{2}.
factor(-10x^{2}+1-3+2x^{2}-x+13)
Combine 2x and -2x to get 0.
factor(-10x^{2}-2+2x^{2}-x+13)
Subtract 3 from 1 to get -2.
factor(-8x^{2}-2-x+13)
Combine -10x^{2} and 2x^{2} to get -8x^{2}.
factor(-8x^{2}+11-x)
Add -2 and 13 to get 11.
-8x^{2}-x+11=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-8\right)\times 11}}{2\left(-8\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1+32\times 11}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-\left(-1\right)±\sqrt{1+352}}{2\left(-8\right)}
Multiply 32 times 11.
x=\frac{-\left(-1\right)±\sqrt{353}}{2\left(-8\right)}
Add 1 to 352.
x=\frac{1±\sqrt{353}}{2\left(-8\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{353}}{-16}
Multiply 2 times -8.
x=\frac{\sqrt{353}+1}{-16}
Now solve the equation x=\frac{1±\sqrt{353}}{-16} when ± is plus. Add 1 to \sqrt{353}.
x=\frac{-\sqrt{353}-1}{16}
Divide 1+\sqrt{353} by -16.
x=\frac{1-\sqrt{353}}{-16}
Now solve the equation x=\frac{1±\sqrt{353}}{-16} when ± is minus. Subtract \sqrt{353} from 1.
x=\frac{\sqrt{353}-1}{16}
Divide 1-\sqrt{353} by -16.
-8x^{2}-x+11=-8\left(x-\frac{-\sqrt{353}-1}{16}\right)\left(x-\frac{\sqrt{353}-1}{16}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{353}}{16} for x_{1} and \frac{-1+\sqrt{353}}{16} for x_{2}.