Evaluate
6561g^{2}f^{12}d^{16}
Expand
6561g^{2}f^{12}d^{16}
Share
Copied to clipboard
\left(-3d^{2}f^{3}g\right)^{2}\left(-3d^{2}f\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\left(-3\right)^{2}\left(d^{2}\right)^{2}\left(f^{3}\right)^{2}g^{2}\left(-3d^{2}f\right)^{6}
Expand \left(-3d^{2}f^{3}g\right)^{2}.
\left(-3\right)^{2}d^{4}\left(f^{3}\right)^{2}g^{2}\left(-3d^{2}f\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-3\right)^{2}d^{4}f^{6}g^{2}\left(-3d^{2}f\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
9d^{4}f^{6}g^{2}\left(-3d^{2}f\right)^{6}
Calculate -3 to the power of 2 and get 9.
9d^{4}f^{6}g^{2}\left(-3\right)^{6}\left(d^{2}\right)^{6}f^{6}
Expand \left(-3d^{2}f\right)^{6}.
9d^{4}f^{6}g^{2}\left(-3\right)^{6}d^{12}f^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 6 to get 12.
9d^{4}f^{6}g^{2}\times 729d^{12}f^{6}
Calculate -3 to the power of 6 and get 729.
6561d^{4}f^{6}g^{2}d^{12}f^{6}
Multiply 9 and 729 to get 6561.
6561d^{16}f^{6}g^{2}f^{6}
To multiply powers of the same base, add their exponents. Add 4 and 12 to get 16.
6561d^{16}f^{12}g^{2}
To multiply powers of the same base, add their exponents. Add 6 and 6 to get 12.
\left(-3d^{2}f^{3}g\right)^{2}\left(-3d^{2}f\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\left(-3\right)^{2}\left(d^{2}\right)^{2}\left(f^{3}\right)^{2}g^{2}\left(-3d^{2}f\right)^{6}
Expand \left(-3d^{2}f^{3}g\right)^{2}.
\left(-3\right)^{2}d^{4}\left(f^{3}\right)^{2}g^{2}\left(-3d^{2}f\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-3\right)^{2}d^{4}f^{6}g^{2}\left(-3d^{2}f\right)^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
9d^{4}f^{6}g^{2}\left(-3d^{2}f\right)^{6}
Calculate -3 to the power of 2 and get 9.
9d^{4}f^{6}g^{2}\left(-3\right)^{6}\left(d^{2}\right)^{6}f^{6}
Expand \left(-3d^{2}f\right)^{6}.
9d^{4}f^{6}g^{2}\left(-3\right)^{6}d^{12}f^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 6 to get 12.
9d^{4}f^{6}g^{2}\times 729d^{12}f^{6}
Calculate -3 to the power of 6 and get 729.
6561d^{4}f^{6}g^{2}d^{12}f^{6}
Multiply 9 and 729 to get 6561.
6561d^{16}f^{6}g^{2}f^{6}
To multiply powers of the same base, add their exponents. Add 4 and 12 to get 16.
6561d^{16}f^{12}g^{2}
To multiply powers of the same base, add their exponents. Add 6 and 6 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}