Solve for a
a=\frac{\left(3b+c+10\right)^{2}+16}{8}
Solve for b (complex solution)
b=\frac{-c+2\sqrt{2a-4}-10}{3}
b=\frac{-c-2\sqrt{2a-4}-10}{3}
Solve for b
b=\frac{-c+2\sqrt{2a-4}-10}{3}
b=\frac{-c-2\sqrt{2a-4}-10}{3}\text{, }a\geq 2
Share
Copied to clipboard
9b^{2}+6bc+60b+c^{2}+20c+100-4\left(2a-4\right)=0
Square -3b-c-10.
9b^{2}+6bc+60b+c^{2}+20c+100-8a+16=0
Use the distributive property to multiply -4 by 2a-4.
9b^{2}+6bc+60b+c^{2}+20c+116-8a=0
Add 100 and 16 to get 116.
6bc+60b+c^{2}+20c+116-8a=-9b^{2}
Subtract 9b^{2} from both sides. Anything subtracted from zero gives its negation.
60b+c^{2}+20c+116-8a=-9b^{2}-6bc
Subtract 6bc from both sides.
c^{2}+20c+116-8a=-9b^{2}-6bc-60b
Subtract 60b from both sides.
20c+116-8a=-9b^{2}-6bc-60b-c^{2}
Subtract c^{2} from both sides.
116-8a=-9b^{2}-6bc-60b-c^{2}-20c
Subtract 20c from both sides.
-8a=-9b^{2}-6bc-60b-c^{2}-20c-116
Subtract 116 from both sides.
\frac{-8a}{-8}=\frac{-\left(3b+c\right)^{2}-20c-60b-116}{-8}
Divide both sides by -8.
a=\frac{-\left(3b+c\right)^{2}-20c-60b-116}{-8}
Dividing by -8 undoes the multiplication by -8.
a=\frac{\left(3b+c\right)^{2}}{8}+\frac{5c}{2}+\frac{15b}{2}+\frac{29}{2}
Divide -60b-20c-116-\left(3b+c\right)^{2} by -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}