Evaluate
27\left(3-a\right)a^{2}
Expand
81a^{2}-27a^{3}
Share
Copied to clipboard
\left(-3\right)^{3}a^{3}-\left(-9\left(-3a\right)^{2}\right)
Expand \left(-3a\right)^{3}.
-27a^{3}-\left(-9\left(-3a\right)^{2}\right)
Calculate -3 to the power of 3 and get -27.
-27a^{3}-\left(-9\left(-3\right)^{2}a^{2}\right)
Expand \left(-3a\right)^{2}.
-27a^{3}-\left(-9\times 9a^{2}\right)
Calculate -3 to the power of 2 and get 9.
-27a^{3}-\left(-81a^{2}\right)
Multiply -9 and 9 to get -81.
-27a^{3}+81a^{2}
The opposite of -81a^{2} is 81a^{2}.
\left(-3\right)^{3}a^{3}-\left(-9\left(-3a\right)^{2}\right)
Expand \left(-3a\right)^{3}.
-27a^{3}-\left(-9\left(-3a\right)^{2}\right)
Calculate -3 to the power of 3 and get -27.
-27a^{3}-\left(-9\left(-3\right)^{2}a^{2}\right)
Expand \left(-3a\right)^{2}.
-27a^{3}-\left(-9\times 9a^{2}\right)
Calculate -3 to the power of 2 and get 9.
-27a^{3}-\left(-81a^{2}\right)
Multiply -9 and 9 to get -81.
-27a^{3}+81a^{2}
The opposite of -81a^{2} is 81a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}