Evaluate
\frac{b}{9}
Expand
\frac{b}{9}
Share
Copied to clipboard
\frac{\frac{c^{3}\left(-3cb^{2}a^{3}\right)^{3}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
Cancel out 2a in both numerator and denominator.
\frac{\frac{c^{3}\left(-3\right)^{3}c^{3}\left(b^{2}\right)^{3}\left(a^{3}\right)^{3}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
Expand \left(-3cb^{2}a^{3}\right)^{3}.
\frac{\frac{c^{3}\left(-3\right)^{3}c^{3}b^{6}\left(a^{3}\right)^{3}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{c^{3}\left(-3\right)^{3}c^{3}b^{6}a^{9}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{\frac{c^{3}\left(-27\right)c^{3}b^{6}a^{9}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
Calculate -3 to the power of 3 and get -27.
\frac{\frac{c^{6}\left(-27\right)b^{6}a^{9}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{\frac{-3ba^{6}c^{6}}{-1}}{\left(3a^{2}c^{2}\right)^{3}}
Cancel out 9a^{3}b^{5} in both numerator and denominator.
\frac{3ba^{6}c^{6}}{\left(3a^{2}c^{2}\right)^{3}}
Anything divided by -1 gives its opposite.
\frac{3ba^{6}c^{6}}{3^{3}\left(a^{2}\right)^{3}\left(c^{2}\right)^{3}}
Expand \left(3a^{2}c^{2}\right)^{3}.
\frac{3ba^{6}c^{6}}{3^{3}a^{6}\left(c^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{3ba^{6}c^{6}}{3^{3}a^{6}c^{6}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{3ba^{6}c^{6}}{27a^{6}c^{6}}
Calculate 3 to the power of 3 and get 27.
\frac{b}{9}
Cancel out 3a^{6}c^{6} in both numerator and denominator.
\frac{\frac{c^{3}\left(-3cb^{2}a^{3}\right)^{3}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
Cancel out 2a in both numerator and denominator.
\frac{\frac{c^{3}\left(-3\right)^{3}c^{3}\left(b^{2}\right)^{3}\left(a^{3}\right)^{3}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
Expand \left(-3cb^{2}a^{3}\right)^{3}.
\frac{\frac{c^{3}\left(-3\right)^{3}c^{3}b^{6}\left(a^{3}\right)^{3}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{c^{3}\left(-3\right)^{3}c^{3}b^{6}a^{9}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{\frac{c^{3}\left(-27\right)c^{3}b^{6}a^{9}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
Calculate -3 to the power of 3 and get -27.
\frac{\frac{c^{6}\left(-27\right)b^{6}a^{9}}{-9a^{3}b^{5}}}{\left(3a^{2}c^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{\frac{-3ba^{6}c^{6}}{-1}}{\left(3a^{2}c^{2}\right)^{3}}
Cancel out 9a^{3}b^{5} in both numerator and denominator.
\frac{3ba^{6}c^{6}}{\left(3a^{2}c^{2}\right)^{3}}
Anything divided by -1 gives its opposite.
\frac{3ba^{6}c^{6}}{3^{3}\left(a^{2}\right)^{3}\left(c^{2}\right)^{3}}
Expand \left(3a^{2}c^{2}\right)^{3}.
\frac{3ba^{6}c^{6}}{3^{3}a^{6}\left(c^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{3ba^{6}c^{6}}{3^{3}a^{6}c^{6}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{3ba^{6}c^{6}}{27a^{6}c^{6}}
Calculate 3 to the power of 3 and get 27.
\frac{b}{9}
Cancel out 3a^{6}c^{6} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}