Evaluate
-42b^{3}a^{6}
Expand
-42b^{3}a^{6}
Share
Copied to clipboard
\left(-3\right)^{3}\left(a^{2}\right)^{3}b^{3}-\frac{60a^{7}b^{3}}{-20a}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
Expand \left(-3a^{2}b\right)^{3}.
\left(-3\right)^{3}a^{6}b^{3}-\frac{60a^{7}b^{3}}{-20a}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-27a^{6}b^{3}-\frac{60a^{7}b^{3}}{-20a}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
Calculate -3 to the power of 3 and get -27.
-27a^{6}b^{3}-\frac{3b^{3}a^{6}}{-1}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
Cancel out 20a in both numerator and denominator.
-27a^{6}b^{3}-\left(-3b^{3}a^{6}\right)+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
Anything divided by -1 gives its opposite.
-27a^{6}b^{3}+3b^{3}a^{6}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
The opposite of -3b^{3}a^{6} is 3b^{3}a^{6}.
-24a^{6}b^{3}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
Combine -27a^{6}b^{3} and 3b^{3}a^{6} to get -24a^{6}b^{3}.
-24a^{6}b^{3}+6a^{5}\left(-3\right)ab^{3}
Combine -12ab^{3} and 9ab^{3} to get -3ab^{3}.
-24a^{6}b^{3}-18a^{5}ab^{3}
Multiply 6 and -3 to get -18.
-24a^{6}b^{3}-18a^{6}b^{3}
To multiply powers of the same base, add their exponents. Add 5 and 1 to get 6.
-42a^{6}b^{3}
Combine -24a^{6}b^{3} and -18a^{6}b^{3} to get -42a^{6}b^{3}.
\left(-3\right)^{3}\left(a^{2}\right)^{3}b^{3}-\frac{60a^{7}b^{3}}{-20a}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
Expand \left(-3a^{2}b\right)^{3}.
\left(-3\right)^{3}a^{6}b^{3}-\frac{60a^{7}b^{3}}{-20a}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-27a^{6}b^{3}-\frac{60a^{7}b^{3}}{-20a}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
Calculate -3 to the power of 3 and get -27.
-27a^{6}b^{3}-\frac{3b^{3}a^{6}}{-1}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
Cancel out 20a in both numerator and denominator.
-27a^{6}b^{3}-\left(-3b^{3}a^{6}\right)+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
Anything divided by -1 gives its opposite.
-27a^{6}b^{3}+3b^{3}a^{6}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
The opposite of -3b^{3}a^{6} is 3b^{3}a^{6}.
-24a^{6}b^{3}+6a^{5}\left(-12ab^{3}+9ab^{3}\right)
Combine -27a^{6}b^{3} and 3b^{3}a^{6} to get -24a^{6}b^{3}.
-24a^{6}b^{3}+6a^{5}\left(-3\right)ab^{3}
Combine -12ab^{3} and 9ab^{3} to get -3ab^{3}.
-24a^{6}b^{3}-18a^{5}ab^{3}
Multiply 6 and -3 to get -18.
-24a^{6}b^{3}-18a^{6}b^{3}
To multiply powers of the same base, add their exponents. Add 5 and 1 to get 6.
-42a^{6}b^{3}
Combine -24a^{6}b^{3} and -18a^{6}b^{3} to get -42a^{6}b^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}