Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-3\right)^{1}a^{2}b^{4}}{2^{1}a^{1}b^{1}}
Use the rules of exponents to simplify the expression.
\frac{\left(-3\right)^{1}}{2^{1}}a^{2-1}b^{4-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-3\right)^{1}}{2^{1}}a^{1}b^{4-1}
Subtract 1 from 2.
\frac{\left(-3\right)^{1}}{2^{1}}ab^{3}
Subtract 1 from 4.
-\frac{3}{2}ab^{3}
Divide -3 by 2.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{3b^{4}}{2b}\right)a^{2-1})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{3b^{3}}{2}\right)a^{1})
Do the arithmetic.
\left(-\frac{3b^{3}}{2}\right)a^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-\frac{3b^{3}}{2}\right)a^{0}
Do the arithmetic.
\left(-\frac{3b^{3}}{2}\right)\times 1
For any term t except 0, t^{0}=1.
-\frac{3b^{3}}{2}
For any term t, t\times 1=t and 1t=t.