Evaluate
-\frac{9\left(ab\right)^{4}}{2}
Expand
-\frac{9\left(ab\right)^{4}}{2}
Share
Copied to clipboard
\left(-3\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}+\frac{1}{2}ab\left(-3ab\right)^{3}
Expand \left(-3a^{2}b^{2}\right)^{2}.
\left(-3\right)^{2}a^{4}\left(b^{2}\right)^{2}+\frac{1}{2}ab\left(-3ab\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-3\right)^{2}a^{4}b^{4}+\frac{1}{2}ab\left(-3ab\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
9a^{4}b^{4}+\frac{1}{2}ab\left(-3ab\right)^{3}
Calculate -3 to the power of 2 and get 9.
9a^{4}b^{4}+\frac{1}{2}ab\left(-3\right)^{3}a^{3}b^{3}
Expand \left(-3ab\right)^{3}.
9a^{4}b^{4}+\frac{1}{2}ab\left(-27\right)a^{3}b^{3}
Calculate -3 to the power of 3 and get -27.
9a^{4}b^{4}-\frac{27}{2}aba^{3}b^{3}
Multiply \frac{1}{2} and -27 to get -\frac{27}{2}.
9a^{4}b^{4}-\frac{27}{2}a^{4}bb^{3}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
9a^{4}b^{4}-\frac{27}{2}a^{4}b^{4}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
-\frac{9}{2}a^{4}b^{4}
Combine 9a^{4}b^{4} and -\frac{27}{2}a^{4}b^{4} to get -\frac{9}{2}a^{4}b^{4}.
\left(-3\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}+\frac{1}{2}ab\left(-3ab\right)^{3}
Expand \left(-3a^{2}b^{2}\right)^{2}.
\left(-3\right)^{2}a^{4}\left(b^{2}\right)^{2}+\frac{1}{2}ab\left(-3ab\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-3\right)^{2}a^{4}b^{4}+\frac{1}{2}ab\left(-3ab\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
9a^{4}b^{4}+\frac{1}{2}ab\left(-3ab\right)^{3}
Calculate -3 to the power of 2 and get 9.
9a^{4}b^{4}+\frac{1}{2}ab\left(-3\right)^{3}a^{3}b^{3}
Expand \left(-3ab\right)^{3}.
9a^{4}b^{4}+\frac{1}{2}ab\left(-27\right)a^{3}b^{3}
Calculate -3 to the power of 3 and get -27.
9a^{4}b^{4}-\frac{27}{2}aba^{3}b^{3}
Multiply \frac{1}{2} and -27 to get -\frac{27}{2}.
9a^{4}b^{4}-\frac{27}{2}a^{4}bb^{3}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
9a^{4}b^{4}-\frac{27}{2}a^{4}b^{4}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
-\frac{9}{2}a^{4}b^{4}
Combine 9a^{4}b^{4} and -\frac{27}{2}a^{4}b^{4} to get -\frac{9}{2}a^{4}b^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}