Solve for y
y=1
Graph
Share
Copied to clipboard
9+6y+y^{2}-\left(2-y\right)^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3-y\right)^{2}.
9+6y+y^{2}-\left(4-4y+y^{2}\right)=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-y\right)^{2}.
9+6y+y^{2}-4+4y-y^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
To find the opposite of 4-4y+y^{2}, find the opposite of each term.
5+6y+y^{2}+4y-y^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Subtract 4 from 9 to get 5.
5+10y+y^{2}-y^{2}=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Combine 6y and 4y to get 10y.
5+10y=\left(y+4\right)\left(4-y\right)+y\left(y+1\right)-2
Combine y^{2} and -y^{2} to get 0.
5+10y=16-y^{2}+y\left(y+1\right)-2
Consider \left(y+4\right)\left(4-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
5+10y=16-y^{2}+y^{2}+y-2
Use the distributive property to multiply y by y+1.
5+10y=16+y-2
Combine -y^{2} and y^{2} to get 0.
5+10y=14+y
Subtract 2 from 16 to get 14.
5+10y-y=14
Subtract y from both sides.
5+9y=14
Combine 10y and -y to get 9y.
9y=14-5
Subtract 5 from both sides.
9y=9
Subtract 5 from 14 to get 9.
y=\frac{9}{9}
Divide both sides by 9.
y=1
Divide 9 by 9 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}