Evaluate
12
Factor
2^{2}\times 3
Graph
Share
Copied to clipboard
-3\left(\left(\frac{1}{4}a^{2}x^{2}\right)^{2}-\left(\frac{1}{2}a^{2}x^{2}\right)^{2}\right)-\left(\left(3a^{2}x\left(-\frac{1}{4}\right)x\right)^{2}-12\right)
Multiply a and a to get a^{2}.
-3\left(\left(\frac{1}{4}a^{2}x^{2}\right)^{2}-\left(\frac{1}{2}a^{2}x^{2}\right)^{2}\right)-\left(\left(3a^{2}x^{2}\left(-\frac{1}{4}\right)\right)^{2}-12\right)
Multiply x and x to get x^{2}.
-3\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}\left(x^{2}\right)^{2}-\left(\frac{1}{2}a^{2}x^{2}\right)^{2}\right)-\left(\left(3a^{2}x^{2}\left(-\frac{1}{4}\right)\right)^{2}-12\right)
Expand \left(\frac{1}{4}a^{2}x^{2}\right)^{2}.
-3\left(\left(\frac{1}{4}\right)^{2}a^{4}\left(x^{2}\right)^{2}-\left(\frac{1}{2}a^{2}x^{2}\right)^{2}\right)-\left(\left(3a^{2}x^{2}\left(-\frac{1}{4}\right)\right)^{2}-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-3\left(\left(\frac{1}{4}\right)^{2}a^{4}x^{4}-\left(\frac{1}{2}a^{2}x^{2}\right)^{2}\right)-\left(\left(3a^{2}x^{2}\left(-\frac{1}{4}\right)\right)^{2}-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-3\left(\frac{1}{16}a^{4}x^{4}-\left(\frac{1}{2}a^{2}x^{2}\right)^{2}\right)-\left(\left(3a^{2}x^{2}\left(-\frac{1}{4}\right)\right)^{2}-12\right)
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
-3\left(\frac{1}{16}a^{4}x^{4}-\left(\frac{1}{2}\right)^{2}\left(a^{2}\right)^{2}\left(x^{2}\right)^{2}\right)-\left(\left(3a^{2}x^{2}\left(-\frac{1}{4}\right)\right)^{2}-12\right)
Expand \left(\frac{1}{2}a^{2}x^{2}\right)^{2}.
-3\left(\frac{1}{16}a^{4}x^{4}-\left(\frac{1}{2}\right)^{2}a^{4}\left(x^{2}\right)^{2}\right)-\left(\left(3a^{2}x^{2}\left(-\frac{1}{4}\right)\right)^{2}-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-3\left(\frac{1}{16}a^{4}x^{4}-\left(\frac{1}{2}\right)^{2}a^{4}x^{4}\right)-\left(\left(3a^{2}x^{2}\left(-\frac{1}{4}\right)\right)^{2}-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-3\left(\frac{1}{16}a^{4}x^{4}-\frac{1}{4}a^{4}x^{4}\right)-\left(\left(3a^{2}x^{2}\left(-\frac{1}{4}\right)\right)^{2}-12\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
-3\left(-\frac{3}{16}\right)a^{4}x^{4}-\left(\left(3a^{2}x^{2}\left(-\frac{1}{4}\right)\right)^{2}-12\right)
Combine \frac{1}{16}a^{4}x^{4} and -\frac{1}{4}a^{4}x^{4} to get -\frac{3}{16}a^{4}x^{4}.
\frac{9}{16}a^{4}x^{4}-\left(\left(3a^{2}x^{2}\left(-\frac{1}{4}\right)\right)^{2}-12\right)
Multiply -3 and -\frac{3}{16} to get \frac{9}{16}.
\frac{9}{16}a^{4}x^{4}-\left(\left(-\frac{3}{4}a^{2}x^{2}\right)^{2}-12\right)
Multiply 3 and -\frac{1}{4} to get -\frac{3}{4}.
\frac{9}{16}a^{4}x^{4}-\left(\left(-\frac{3}{4}\right)^{2}\left(a^{2}\right)^{2}\left(x^{2}\right)^{2}-12\right)
Expand \left(-\frac{3}{4}a^{2}x^{2}\right)^{2}.
\frac{9}{16}a^{4}x^{4}-\left(\left(-\frac{3}{4}\right)^{2}a^{4}\left(x^{2}\right)^{2}-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9}{16}a^{4}x^{4}-\left(\left(-\frac{3}{4}\right)^{2}a^{4}x^{4}-12\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9}{16}a^{4}x^{4}-\left(\frac{9}{16}a^{4}x^{4}-12\right)
Calculate -\frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{9}{16}a^{4}x^{4}-\frac{9}{16}a^{4}x^{4}+12
To find the opposite of \frac{9}{16}a^{4}x^{4}-12, find the opposite of each term.
12
Combine \frac{9}{16}a^{4}x^{4} and -\frac{9}{16}a^{4}x^{4} to get 0.
\frac{3\left(-\left(\left(a^{2}x^{2}\right)^{2}-4\left(a^{2}x^{2}\right)^{2}\right)-\left(3\left(axax\right)^{2}-64\right)\right)}{16}
Factor out \frac{3}{16}.
12
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}