Evaluate
-\frac{k^{3}}{72h^{8}}
Expand
-\frac{k^{3}}{72h^{8}}
Share
Copied to clipboard
\left(-\frac{1}{3}h^{2}k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\left(-\frac{1}{3}\right)^{2}\left(h^{2}\right)^{2}\left(k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
Expand \left(-\frac{1}{3}h^{2}k^{3}\right)^{2}.
\left(-\frac{1}{3}\right)^{2}h^{4}\left(k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-\frac{1}{3}\right)^{2}h^{4}k^{6}\left(-2h^{4}k\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{1}{9}h^{4}k^{6}\left(-2h^{4}k\right)^{-3}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{9}h^{4}k^{6}\left(-2\right)^{-3}\left(h^{4}\right)^{-3}k^{-3}
Expand \left(-2h^{4}k\right)^{-3}.
\frac{1}{9}h^{4}k^{6}\left(-2\right)^{-3}h^{-12}k^{-3}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{1}{9}h^{4}k^{6}\left(-\frac{1}{8}\right)h^{-12}k^{-3}
Calculate -2 to the power of -3 and get -\frac{1}{8}.
-\frac{1}{72}h^{4}k^{6}h^{-12}k^{-3}
Multiply \frac{1}{9} and -\frac{1}{8} to get -\frac{1}{72}.
-\frac{1}{72}h^{-8}k^{6}k^{-3}
To multiply powers of the same base, add their exponents. Add 4 and -12 to get -8.
-\frac{1}{72}h^{-8}k^{3}
To multiply powers of the same base, add their exponents. Add 6 and -3 to get 3.
\left(-\frac{1}{3}h^{2}k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\left(-\frac{1}{3}\right)^{2}\left(h^{2}\right)^{2}\left(k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
Expand \left(-\frac{1}{3}h^{2}k^{3}\right)^{2}.
\left(-\frac{1}{3}\right)^{2}h^{4}\left(k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-\frac{1}{3}\right)^{2}h^{4}k^{6}\left(-2h^{4}k\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{1}{9}h^{4}k^{6}\left(-2h^{4}k\right)^{-3}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{9}h^{4}k^{6}\left(-2\right)^{-3}\left(h^{4}\right)^{-3}k^{-3}
Expand \left(-2h^{4}k\right)^{-3}.
\frac{1}{9}h^{4}k^{6}\left(-2\right)^{-3}h^{-12}k^{-3}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{1}{9}h^{4}k^{6}\left(-\frac{1}{8}\right)h^{-12}k^{-3}
Calculate -2 to the power of -3 and get -\frac{1}{8}.
-\frac{1}{72}h^{4}k^{6}h^{-12}k^{-3}
Multiply \frac{1}{9} and -\frac{1}{8} to get -\frac{1}{72}.
-\frac{1}{72}h^{-8}k^{6}k^{-3}
To multiply powers of the same base, add their exponents. Add 4 and -12 to get -8.
-\frac{1}{72}h^{-8}k^{3}
To multiply powers of the same base, add their exponents. Add 6 and -3 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}