Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-\frac{1}{3}h^{2}k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\left(-\frac{1}{3}\right)^{2}\left(h^{2}\right)^{2}\left(k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
Expand \left(-\frac{1}{3}h^{2}k^{3}\right)^{2}.
\left(-\frac{1}{3}\right)^{2}h^{4}\left(k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-\frac{1}{3}\right)^{2}h^{4}k^{6}\left(-2h^{4}k\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{1}{9}h^{4}k^{6}\left(-2h^{4}k\right)^{-3}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{9}h^{4}k^{6}\left(-2\right)^{-3}\left(h^{4}\right)^{-3}k^{-3}
Expand \left(-2h^{4}k\right)^{-3}.
\frac{1}{9}h^{4}k^{6}\left(-2\right)^{-3}h^{-12}k^{-3}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{1}{9}h^{4}k^{6}\left(-\frac{1}{8}\right)h^{-12}k^{-3}
Calculate -2 to the power of -3 and get -\frac{1}{8}.
-\frac{1}{72}h^{4}k^{6}h^{-12}k^{-3}
Multiply \frac{1}{9} and -\frac{1}{8} to get -\frac{1}{72}.
-\frac{1}{72}h^{-8}k^{6}k^{-3}
To multiply powers of the same base, add their exponents. Add 4 and -12 to get -8.
-\frac{1}{72}h^{-8}k^{3}
To multiply powers of the same base, add their exponents. Add 6 and -3 to get 3.
\left(-\frac{1}{3}h^{2}k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
Calculate 3 to the power of -1 and get \frac{1}{3}.
\left(-\frac{1}{3}\right)^{2}\left(h^{2}\right)^{2}\left(k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
Expand \left(-\frac{1}{3}h^{2}k^{3}\right)^{2}.
\left(-\frac{1}{3}\right)^{2}h^{4}\left(k^{3}\right)^{2}\left(-2h^{4}k\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\left(-\frac{1}{3}\right)^{2}h^{4}k^{6}\left(-2h^{4}k\right)^{-3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{1}{9}h^{4}k^{6}\left(-2h^{4}k\right)^{-3}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{9}h^{4}k^{6}\left(-2\right)^{-3}\left(h^{4}\right)^{-3}k^{-3}
Expand \left(-2h^{4}k\right)^{-3}.
\frac{1}{9}h^{4}k^{6}\left(-2\right)^{-3}h^{-12}k^{-3}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{1}{9}h^{4}k^{6}\left(-\frac{1}{8}\right)h^{-12}k^{-3}
Calculate -2 to the power of -3 and get -\frac{1}{8}.
-\frac{1}{72}h^{4}k^{6}h^{-12}k^{-3}
Multiply \frac{1}{9} and -\frac{1}{8} to get -\frac{1}{72}.
-\frac{1}{72}h^{-8}k^{6}k^{-3}
To multiply powers of the same base, add their exponents. Add 4 and -12 to get -8.
-\frac{1}{72}h^{-8}k^{3}
To multiply powers of the same base, add their exponents. Add 6 and -3 to get 3.