Evaluate
-\frac{41}{4}=-10.25
Factor
-\frac{41}{4} = -10\frac{1}{4} = -10.25
Share
Copied to clipboard
-\frac{6}{2}+\frac{1}{2}+\left(-3-\frac{1}{2}\right)\times 2-3\times \frac{1}{4}
Convert -3 to fraction -\frac{6}{2}.
\frac{-6+1}{2}+\left(-3-\frac{1}{2}\right)\times 2-3\times \frac{1}{4}
Since -\frac{6}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
-\frac{5}{2}+\left(-3-\frac{1}{2}\right)\times 2-3\times \frac{1}{4}
Add -6 and 1 to get -5.
-\frac{5}{2}+\left(-\frac{6}{2}-\frac{1}{2}\right)\times 2-3\times \frac{1}{4}
Convert -3 to fraction -\frac{6}{2}.
-\frac{5}{2}+\frac{-6-1}{2}\times 2-3\times \frac{1}{4}
Since -\frac{6}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{2}-\frac{7}{2}\times 2-3\times \frac{1}{4}
Subtract 1 from -6 to get -7.
-\frac{5}{2}-7-3\times \frac{1}{4}
Cancel out 2 and 2.
-\frac{5}{2}-\frac{14}{2}-3\times \frac{1}{4}
Convert 7 to fraction \frac{14}{2}.
\frac{-5-14}{2}-3\times \frac{1}{4}
Since -\frac{5}{2} and \frac{14}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{19}{2}-3\times \frac{1}{4}
Subtract 14 from -5 to get -19.
-\frac{19}{2}-\frac{3}{4}
Multiply 3 and \frac{1}{4} to get \frac{3}{4}.
-\frac{38}{4}-\frac{3}{4}
Least common multiple of 2 and 4 is 4. Convert -\frac{19}{2} and \frac{3}{4} to fractions with denominator 4.
\frac{-38-3}{4}
Since -\frac{38}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{41}{4}
Subtract 3 from -38 to get -41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}