Solve for x
x=\frac{\sqrt{295941}-256}{1015}\approx 0.28374837
x=\frac{-\sqrt{295941}-256}{1015}\approx -0.788181868
Graph
Share
Copied to clipboard
-28\left(-4-5x\right)\left(2-7x\right)=\left(5x-1\right)\left(3+7x\right)
Variable x cannot be equal to any of the values -\frac{4}{5},\frac{1}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5x-1\right)\left(5x+4\right), the least common multiple of 1-5x,4+5x.
\left(112+140x\right)\left(2-7x\right)=\left(5x-1\right)\left(3+7x\right)
Use the distributive property to multiply -28 by -4-5x.
224-504x-980x^{2}=\left(5x-1\right)\left(3+7x\right)
Use the distributive property to multiply 112+140x by 2-7x and combine like terms.
224-504x-980x^{2}=8x+35x^{2}-3
Use the distributive property to multiply 5x-1 by 3+7x and combine like terms.
224-504x-980x^{2}-8x=35x^{2}-3
Subtract 8x from both sides.
224-512x-980x^{2}=35x^{2}-3
Combine -504x and -8x to get -512x.
224-512x-980x^{2}-35x^{2}=-3
Subtract 35x^{2} from both sides.
224-512x-1015x^{2}=-3
Combine -980x^{2} and -35x^{2} to get -1015x^{2}.
224-512x-1015x^{2}+3=0
Add 3 to both sides.
227-512x-1015x^{2}=0
Add 224 and 3 to get 227.
-1015x^{2}-512x+227=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-512\right)±\sqrt{\left(-512\right)^{2}-4\left(-1015\right)\times 227}}{2\left(-1015\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1015 for a, -512 for b, and 227 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-512\right)±\sqrt{262144-4\left(-1015\right)\times 227}}{2\left(-1015\right)}
Square -512.
x=\frac{-\left(-512\right)±\sqrt{262144+4060\times 227}}{2\left(-1015\right)}
Multiply -4 times -1015.
x=\frac{-\left(-512\right)±\sqrt{262144+921620}}{2\left(-1015\right)}
Multiply 4060 times 227.
x=\frac{-\left(-512\right)±\sqrt{1183764}}{2\left(-1015\right)}
Add 262144 to 921620.
x=\frac{-\left(-512\right)±2\sqrt{295941}}{2\left(-1015\right)}
Take the square root of 1183764.
x=\frac{512±2\sqrt{295941}}{2\left(-1015\right)}
The opposite of -512 is 512.
x=\frac{512±2\sqrt{295941}}{-2030}
Multiply 2 times -1015.
x=\frac{2\sqrt{295941}+512}{-2030}
Now solve the equation x=\frac{512±2\sqrt{295941}}{-2030} when ± is plus. Add 512 to 2\sqrt{295941}.
x=\frac{-\sqrt{295941}-256}{1015}
Divide 512+2\sqrt{295941} by -2030.
x=\frac{512-2\sqrt{295941}}{-2030}
Now solve the equation x=\frac{512±2\sqrt{295941}}{-2030} when ± is minus. Subtract 2\sqrt{295941} from 512.
x=\frac{\sqrt{295941}-256}{1015}
Divide 512-2\sqrt{295941} by -2030.
x=\frac{-\sqrt{295941}-256}{1015} x=\frac{\sqrt{295941}-256}{1015}
The equation is now solved.
-28\left(-4-5x\right)\left(2-7x\right)=\left(5x-1\right)\left(3+7x\right)
Variable x cannot be equal to any of the values -\frac{4}{5},\frac{1}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5x-1\right)\left(5x+4\right), the least common multiple of 1-5x,4+5x.
\left(112+140x\right)\left(2-7x\right)=\left(5x-1\right)\left(3+7x\right)
Use the distributive property to multiply -28 by -4-5x.
224-504x-980x^{2}=\left(5x-1\right)\left(3+7x\right)
Use the distributive property to multiply 112+140x by 2-7x and combine like terms.
224-504x-980x^{2}=8x+35x^{2}-3
Use the distributive property to multiply 5x-1 by 3+7x and combine like terms.
224-504x-980x^{2}-8x=35x^{2}-3
Subtract 8x from both sides.
224-512x-980x^{2}=35x^{2}-3
Combine -504x and -8x to get -512x.
224-512x-980x^{2}-35x^{2}=-3
Subtract 35x^{2} from both sides.
224-512x-1015x^{2}=-3
Combine -980x^{2} and -35x^{2} to get -1015x^{2}.
-512x-1015x^{2}=-3-224
Subtract 224 from both sides.
-512x-1015x^{2}=-227
Subtract 224 from -3 to get -227.
-1015x^{2}-512x=-227
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-1015x^{2}-512x}{-1015}=-\frac{227}{-1015}
Divide both sides by -1015.
x^{2}+\left(-\frac{512}{-1015}\right)x=-\frac{227}{-1015}
Dividing by -1015 undoes the multiplication by -1015.
x^{2}+\frac{512}{1015}x=-\frac{227}{-1015}
Divide -512 by -1015.
x^{2}+\frac{512}{1015}x=\frac{227}{1015}
Divide -227 by -1015.
x^{2}+\frac{512}{1015}x+\left(\frac{256}{1015}\right)^{2}=\frac{227}{1015}+\left(\frac{256}{1015}\right)^{2}
Divide \frac{512}{1015}, the coefficient of the x term, by 2 to get \frac{256}{1015}. Then add the square of \frac{256}{1015} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{512}{1015}x+\frac{65536}{1030225}=\frac{227}{1015}+\frac{65536}{1030225}
Square \frac{256}{1015} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{512}{1015}x+\frac{65536}{1030225}=\frac{295941}{1030225}
Add \frac{227}{1015} to \frac{65536}{1030225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{256}{1015}\right)^{2}=\frac{295941}{1030225}
Factor x^{2}+\frac{512}{1015}x+\frac{65536}{1030225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{256}{1015}\right)^{2}}=\sqrt{\frac{295941}{1030225}}
Take the square root of both sides of the equation.
x+\frac{256}{1015}=\frac{\sqrt{295941}}{1015} x+\frac{256}{1015}=-\frac{\sqrt{295941}}{1015}
Simplify.
x=\frac{\sqrt{295941}-256}{1015} x=\frac{-\sqrt{295941}-256}{1015}
Subtract \frac{256}{1015} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}