Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x-1+6=2x^{2}+9-8x
Combine -2x and -4x to get -6x.
-6x+5=2x^{2}+9-8x
Add -1 and 6 to get 5.
-6x+5-2x^{2}=9-8x
Subtract 2x^{2} from both sides.
-6x+5-2x^{2}-9=-8x
Subtract 9 from both sides.
-6x-4-2x^{2}=-8x
Subtract 9 from 5 to get -4.
-6x-4-2x^{2}+8x=0
Add 8x to both sides.
2x-4-2x^{2}=0
Combine -6x and 8x to get 2x.
-2x^{2}+2x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-2\right)\left(-4\right)}}{2\left(-2\right)}
Square 2.
x=\frac{-2±\sqrt{4+8\left(-4\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-2±\sqrt{4-32}}{2\left(-2\right)}
Multiply 8 times -4.
x=\frac{-2±\sqrt{-28}}{2\left(-2\right)}
Add 4 to -32.
x=\frac{-2±2\sqrt{7}i}{2\left(-2\right)}
Take the square root of -28.
x=\frac{-2±2\sqrt{7}i}{-4}
Multiply 2 times -2.
x=\frac{-2+2\sqrt{7}i}{-4}
Now solve the equation x=\frac{-2±2\sqrt{7}i}{-4} when ± is plus. Add -2 to 2i\sqrt{7}.
x=\frac{-\sqrt{7}i+1}{2}
Divide -2+2i\sqrt{7} by -4.
x=\frac{-2\sqrt{7}i-2}{-4}
Now solve the equation x=\frac{-2±2\sqrt{7}i}{-4} when ± is minus. Subtract 2i\sqrt{7} from -2.
x=\frac{1+\sqrt{7}i}{2}
Divide -2-2i\sqrt{7} by -4.
x=\frac{-\sqrt{7}i+1}{2} x=\frac{1+\sqrt{7}i}{2}
The equation is now solved.
-6x-1+6=2x^{2}+9-8x
Combine -2x and -4x to get -6x.
-6x+5=2x^{2}+9-8x
Add -1 and 6 to get 5.
-6x+5-2x^{2}=9-8x
Subtract 2x^{2} from both sides.
-6x+5-2x^{2}+8x=9
Add 8x to both sides.
2x+5-2x^{2}=9
Combine -6x and 8x to get 2x.
2x-2x^{2}=9-5
Subtract 5 from both sides.
2x-2x^{2}=4
Subtract 5 from 9 to get 4.
-2x^{2}+2x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+2x}{-2}=\frac{4}{-2}
Divide both sides by -2.
x^{2}+\frac{2}{-2}x=\frac{4}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-x=\frac{4}{-2}
Divide 2 by -2.
x^{2}-x=-2
Divide 4 by -2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-2+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-2+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{7}{4}
Add -2 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{7}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{7}i}{2} x-\frac{1}{2}=-\frac{\sqrt{7}i}{2}
Simplify.
x=\frac{1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i+1}{2}
Add \frac{1}{2} to both sides of the equation.