Evaluate
16y^{8}x^{9}
Expand
16y^{8}x^{9}
Share
Copied to clipboard
\frac{\left(-2x^{5}y^{3}\right)^{4}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}x^{3}}y^{2}
Express \frac{\frac{\left(-2x^{5}y^{3}\right)^{4}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}}}{x^{3}} as a single fraction.
\frac{\left(-2\right)^{4}\left(x^{5}\right)^{4}\left(y^{3}\right)^{4}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}x^{3}}y^{2}
Expand \left(-2x^{5}y^{3}\right)^{4}.
\frac{\left(-2\right)^{4}x^{20}\left(y^{3}\right)^{4}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}x^{3}}y^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 4 to get 20.
\frac{\left(-2\right)^{4}x^{20}y^{12}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}x^{3}}y^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{16x^{20}y^{12}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}x^{3}}y^{2}
Calculate -2 to the power of 4 and get 16.
\frac{16x^{20}y^{12}}{\left(-x^{4}\right)^{2}\left(y^{3}\right)^{2}x^{3}}y^{2}
Expand \left(\left(-x^{4}\right)y^{3}\right)^{2}.
\frac{16x^{20}y^{12}}{\left(-x^{4}\right)^{2}y^{6}x^{3}}y^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{16x^{20}y^{12}}{\left(x^{4}\right)^{2}y^{6}x^{3}}y^{2}
Calculate -x^{4} to the power of 2 and get \left(x^{4}\right)^{2}.
\frac{16y^{6}x^{17}}{\left(x^{4}\right)^{2}}y^{2}
Cancel out x^{3}y^{6} in both numerator and denominator.
\frac{16y^{6}x^{17}y^{2}}{\left(x^{4}\right)^{2}}
Express \frac{16y^{6}x^{17}}{\left(x^{4}\right)^{2}}y^{2} as a single fraction.
\frac{16y^{8}x^{17}}{\left(x^{4}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{16y^{8}x^{17}}{x^{8}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
16y^{8}x^{9}
Cancel out x^{8} in both numerator and denominator.
\frac{\left(-2x^{5}y^{3}\right)^{4}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}x^{3}}y^{2}
Express \frac{\frac{\left(-2x^{5}y^{3}\right)^{4}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}}}{x^{3}} as a single fraction.
\frac{\left(-2\right)^{4}\left(x^{5}\right)^{4}\left(y^{3}\right)^{4}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}x^{3}}y^{2}
Expand \left(-2x^{5}y^{3}\right)^{4}.
\frac{\left(-2\right)^{4}x^{20}\left(y^{3}\right)^{4}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}x^{3}}y^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 4 to get 20.
\frac{\left(-2\right)^{4}x^{20}y^{12}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}x^{3}}y^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
\frac{16x^{20}y^{12}}{\left(\left(-x^{4}\right)y^{3}\right)^{2}x^{3}}y^{2}
Calculate -2 to the power of 4 and get 16.
\frac{16x^{20}y^{12}}{\left(-x^{4}\right)^{2}\left(y^{3}\right)^{2}x^{3}}y^{2}
Expand \left(\left(-x^{4}\right)y^{3}\right)^{2}.
\frac{16x^{20}y^{12}}{\left(-x^{4}\right)^{2}y^{6}x^{3}}y^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{16x^{20}y^{12}}{\left(x^{4}\right)^{2}y^{6}x^{3}}y^{2}
Calculate -x^{4} to the power of 2 and get \left(x^{4}\right)^{2}.
\frac{16y^{6}x^{17}}{\left(x^{4}\right)^{2}}y^{2}
Cancel out x^{3}y^{6} in both numerator and denominator.
\frac{16y^{6}x^{17}y^{2}}{\left(x^{4}\right)^{2}}
Express \frac{16y^{6}x^{17}}{\left(x^{4}\right)^{2}}y^{2} as a single fraction.
\frac{16y^{8}x^{17}}{\left(x^{4}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{16y^{8}x^{17}}{x^{8}}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
16y^{8}x^{9}
Cancel out x^{8} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}