Solve for x
x=-3
x=-2
Graph
Share
Copied to clipboard
-x^{2}-5x-6=0
Divide both sides by 2.
a+b=-5 ab=-\left(-6\right)=6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
-1,-6 -2,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 6.
-1-6=-7 -2-3=-5
Calculate the sum for each pair.
a=-2 b=-3
The solution is the pair that gives sum -5.
\left(-x^{2}-2x\right)+\left(-3x-6\right)
Rewrite -x^{2}-5x-6 as \left(-x^{2}-2x\right)+\left(-3x-6\right).
x\left(-x-2\right)+3\left(-x-2\right)
Factor out x in the first and 3 in the second group.
\left(-x-2\right)\left(x+3\right)
Factor out common term -x-2 by using distributive property.
x=-2 x=-3
To find equation solutions, solve -x-2=0 and x+3=0.
-2x^{2}-10x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -10 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+8\left(-12\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2\left(-2\right)}
Multiply 8 times -12.
x=\frac{-\left(-10\right)±\sqrt{4}}{2\left(-2\right)}
Add 100 to -96.
x=\frac{-\left(-10\right)±2}{2\left(-2\right)}
Take the square root of 4.
x=\frac{10±2}{2\left(-2\right)}
The opposite of -10 is 10.
x=\frac{10±2}{-4}
Multiply 2 times -2.
x=\frac{12}{-4}
Now solve the equation x=\frac{10±2}{-4} when ± is plus. Add 10 to 2.
x=-3
Divide 12 by -4.
x=\frac{8}{-4}
Now solve the equation x=\frac{10±2}{-4} when ± is minus. Subtract 2 from 10.
x=-2
Divide 8 by -4.
x=-3 x=-2
The equation is now solved.
-2x^{2}-10x-12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}-10x-12-\left(-12\right)=-\left(-12\right)
Add 12 to both sides of the equation.
-2x^{2}-10x=-\left(-12\right)
Subtracting -12 from itself leaves 0.
-2x^{2}-10x=12
Subtract -12 from 0.
\frac{-2x^{2}-10x}{-2}=\frac{12}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{10}{-2}\right)x=\frac{12}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+5x=\frac{12}{-2}
Divide -10 by -2.
x^{2}+5x=-6
Divide 12 by -2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
Add -6 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Simplify.
x=-2 x=-3
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}