Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

18x^{2}-91x+45+\left(-9x-5\right)^{2}=0
Use the distributive property to multiply -2x+9 by -9x+5 and combine like terms.
18x^{2}-91x+45+81x^{2}+90x+25=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-9x-5\right)^{2}.
99x^{2}-91x+45+90x+25=0
Combine 18x^{2} and 81x^{2} to get 99x^{2}.
99x^{2}-x+45+25=0
Combine -91x and 90x to get -x.
99x^{2}-x+70=0
Add 45 and 25 to get 70.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 99\times 70}}{2\times 99}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 99 for a, -1 for b, and 70 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-396\times 70}}{2\times 99}
Multiply -4 times 99.
x=\frac{-\left(-1\right)±\sqrt{1-27720}}{2\times 99}
Multiply -396 times 70.
x=\frac{-\left(-1\right)±\sqrt{-27719}}{2\times 99}
Add 1 to -27720.
x=\frac{-\left(-1\right)±\sqrt{27719}i}{2\times 99}
Take the square root of -27719.
x=\frac{1±\sqrt{27719}i}{2\times 99}
The opposite of -1 is 1.
x=\frac{1±\sqrt{27719}i}{198}
Multiply 2 times 99.
x=\frac{1+\sqrt{27719}i}{198}
Now solve the equation x=\frac{1±\sqrt{27719}i}{198} when ± is plus. Add 1 to i\sqrt{27719}.
x=\frac{-\sqrt{27719}i+1}{198}
Now solve the equation x=\frac{1±\sqrt{27719}i}{198} when ± is minus. Subtract i\sqrt{27719} from 1.
x=\frac{1+\sqrt{27719}i}{198} x=\frac{-\sqrt{27719}i+1}{198}
The equation is now solved.
18x^{2}-91x+45+\left(-9x-5\right)^{2}=0
Use the distributive property to multiply -2x+9 by -9x+5 and combine like terms.
18x^{2}-91x+45+81x^{2}+90x+25=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-9x-5\right)^{2}.
99x^{2}-91x+45+90x+25=0
Combine 18x^{2} and 81x^{2} to get 99x^{2}.
99x^{2}-x+45+25=0
Combine -91x and 90x to get -x.
99x^{2}-x+70=0
Add 45 and 25 to get 70.
99x^{2}-x=-70
Subtract 70 from both sides. Anything subtracted from zero gives its negation.
\frac{99x^{2}-x}{99}=-\frac{70}{99}
Divide both sides by 99.
x^{2}-\frac{1}{99}x=-\frac{70}{99}
Dividing by 99 undoes the multiplication by 99.
x^{2}-\frac{1}{99}x+\left(-\frac{1}{198}\right)^{2}=-\frac{70}{99}+\left(-\frac{1}{198}\right)^{2}
Divide -\frac{1}{99}, the coefficient of the x term, by 2 to get -\frac{1}{198}. Then add the square of -\frac{1}{198} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{99}x+\frac{1}{39204}=-\frac{70}{99}+\frac{1}{39204}
Square -\frac{1}{198} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{99}x+\frac{1}{39204}=-\frac{27719}{39204}
Add -\frac{70}{99} to \frac{1}{39204} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{198}\right)^{2}=-\frac{27719}{39204}
Factor x^{2}-\frac{1}{99}x+\frac{1}{39204}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{198}\right)^{2}}=\sqrt{-\frac{27719}{39204}}
Take the square root of both sides of the equation.
x-\frac{1}{198}=\frac{\sqrt{27719}i}{198} x-\frac{1}{198}=-\frac{\sqrt{27719}i}{198}
Simplify.
x=\frac{1+\sqrt{27719}i}{198} x=\frac{-\sqrt{27719}i+1}{198}
Add \frac{1}{198} to both sides of the equation.