Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4x^{2}-16x+16\right)\left(-4\right)\times 5\left(-2\right)>0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2x+4\right)^{2}.
\left(4x^{2}-16x+16\right)\left(-20\right)\left(-2\right)>0
Multiply -4 and 5 to get -20.
\left(4x^{2}-16x+16\right)\times 40>0
Multiply -20 and -2 to get 40.
160x^{2}-640x+640>0
Use the distributive property to multiply 4x^{2}-16x+16 by 40.
160x^{2}-640x+640=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-640\right)±\sqrt{\left(-640\right)^{2}-4\times 160\times 640}}{2\times 160}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 160 for a, -640 for b, and 640 for c in the quadratic formula.
x=\frac{640±0}{320}
Do the calculations.
x=2
Solutions are the same.
160\left(x-2\right)^{2}>0
Rewrite the inequality by using the obtained solutions.
x\neq 2
Inequality holds for x\neq 2.