Solve for x
x=35
x=45
Graph
Share
Copied to clipboard
-2x^{2}+160x-3000=150
Use the distributive property to multiply -2x+100 by x-30 and combine like terms.
-2x^{2}+160x-3000-150=0
Subtract 150 from both sides.
-2x^{2}+160x-3150=0
Subtract 150 from -3000 to get -3150.
x=\frac{-160±\sqrt{160^{2}-4\left(-2\right)\left(-3150\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 160 for b, and -3150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-160±\sqrt{25600-4\left(-2\right)\left(-3150\right)}}{2\left(-2\right)}
Square 160.
x=\frac{-160±\sqrt{25600+8\left(-3150\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-160±\sqrt{25600-25200}}{2\left(-2\right)}
Multiply 8 times -3150.
x=\frac{-160±\sqrt{400}}{2\left(-2\right)}
Add 25600 to -25200.
x=\frac{-160±20}{2\left(-2\right)}
Take the square root of 400.
x=\frac{-160±20}{-4}
Multiply 2 times -2.
x=-\frac{140}{-4}
Now solve the equation x=\frac{-160±20}{-4} when ± is plus. Add -160 to 20.
x=35
Divide -140 by -4.
x=-\frac{180}{-4}
Now solve the equation x=\frac{-160±20}{-4} when ± is minus. Subtract 20 from -160.
x=45
Divide -180 by -4.
x=35 x=45
The equation is now solved.
-2x^{2}+160x-3000=150
Use the distributive property to multiply -2x+100 by x-30 and combine like terms.
-2x^{2}+160x=150+3000
Add 3000 to both sides.
-2x^{2}+160x=3150
Add 150 and 3000 to get 3150.
\frac{-2x^{2}+160x}{-2}=\frac{3150}{-2}
Divide both sides by -2.
x^{2}+\frac{160}{-2}x=\frac{3150}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-80x=\frac{3150}{-2}
Divide 160 by -2.
x^{2}-80x=-1575
Divide 3150 by -2.
x^{2}-80x+\left(-40\right)^{2}=-1575+\left(-40\right)^{2}
Divide -80, the coefficient of the x term, by 2 to get -40. Then add the square of -40 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-80x+1600=-1575+1600
Square -40.
x^{2}-80x+1600=25
Add -1575 to 1600.
\left(x-40\right)^{2}=25
Factor x^{2}-80x+1600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-40\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-40=5 x-40=-5
Simplify.
x=45 x=35
Add 40 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}