Evaluate
2-3t-10t^{2}
Factor
-10\left(t-\frac{-\sqrt{89}-3}{20}\right)\left(t-\frac{\sqrt{89}-3}{20}\right)
Share
Copied to clipboard
-10t^{2}-7t+5+4t-3
Combine -2t^{2} and -8t^{2} to get -10t^{2}.
-10t^{2}-3t+5-3
Combine -7t and 4t to get -3t.
-10t^{2}-3t+2
Subtract 3 from 5 to get 2.
factor(-10t^{2}-7t+5+4t-3)
Combine -2t^{2} and -8t^{2} to get -10t^{2}.
factor(-10t^{2}-3t+5-3)
Combine -7t and 4t to get -3t.
factor(-10t^{2}-3t+2)
Subtract 3 from 5 to get 2.
-10t^{2}-3t+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-10\right)\times 2}}{2\left(-10\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-3\right)±\sqrt{9-4\left(-10\right)\times 2}}{2\left(-10\right)}
Square -3.
t=\frac{-\left(-3\right)±\sqrt{9+40\times 2}}{2\left(-10\right)}
Multiply -4 times -10.
t=\frac{-\left(-3\right)±\sqrt{9+80}}{2\left(-10\right)}
Multiply 40 times 2.
t=\frac{-\left(-3\right)±\sqrt{89}}{2\left(-10\right)}
Add 9 to 80.
t=\frac{3±\sqrt{89}}{2\left(-10\right)}
The opposite of -3 is 3.
t=\frac{3±\sqrt{89}}{-20}
Multiply 2 times -10.
t=\frac{\sqrt{89}+3}{-20}
Now solve the equation t=\frac{3±\sqrt{89}}{-20} when ± is plus. Add 3 to \sqrt{89}.
t=\frac{-\sqrt{89}-3}{20}
Divide 3+\sqrt{89} by -20.
t=\frac{3-\sqrt{89}}{-20}
Now solve the equation t=\frac{3±\sqrt{89}}{-20} when ± is minus. Subtract \sqrt{89} from 3.
t=\frac{\sqrt{89}-3}{20}
Divide 3-\sqrt{89} by -20.
-10t^{2}-3t+2=-10\left(t-\frac{-\sqrt{89}-3}{20}\right)\left(t-\frac{\sqrt{89}-3}{20}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3-\sqrt{89}}{20} for x_{1} and \frac{-3+\sqrt{89}}{20} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}