Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-2h^{2}\right)^{2}\times \left(3h^{-3}\right)^{-2}
Use the rules of exponents to simplify the expression.
\left(-2\right)^{2}\left(h^{2}\right)^{2}\times 3^{-2}\left(h^{-3}\right)^{-2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-2\right)^{2}\times 3^{-2}\left(h^{2}\right)^{2}\left(h^{-3}\right)^{-2}
Use the Commutative Property of Multiplication.
\left(-2\right)^{2}\times 3^{-2}h^{2\times 2}h^{-3\left(-2\right)}
To raise a power to another power, multiply the exponents.
\left(-2\right)^{2}\times 3^{-2}h^{4}h^{-3\left(-2\right)}
Multiply 2 times 2.
\left(-2\right)^{2}\times 3^{-2}h^{4}h^{6}
Multiply -3 times -2.
\left(-2\right)^{2}\times 3^{-2}h^{4+6}
To multiply powers of the same base, add their exponents.
\left(-2\right)^{2}\times 3^{-2}h^{10}
Add the exponents 4 and 6.
4\times 3^{-2}h^{10}
Raise -2 to the power 2.
4\times \frac{1}{9}h^{10}
Raise 3 to the power -2.
\frac{4}{9}h^{10}
Multiply 4 times \frac{1}{9}.
\left(-2h^{2}\right)^{2}\times \left(3h^{-3}\right)^{-2}
Use the rules of exponents to simplify the expression.
\left(-2\right)^{2}\left(h^{2}\right)^{2}\times 3^{-2}\left(h^{-3}\right)^{-2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-2\right)^{2}\times 3^{-2}\left(h^{2}\right)^{2}\left(h^{-3}\right)^{-2}
Use the Commutative Property of Multiplication.
\left(-2\right)^{2}\times 3^{-2}h^{2\times 2}h^{-3\left(-2\right)}
To raise a power to another power, multiply the exponents.
\left(-2\right)^{2}\times 3^{-2}h^{4}h^{-3\left(-2\right)}
Multiply 2 times 2.
\left(-2\right)^{2}\times 3^{-2}h^{4}h^{6}
Multiply -3 times -2.
\left(-2\right)^{2}\times 3^{-2}h^{4+6}
To multiply powers of the same base, add their exponents.
\left(-2\right)^{2}\times 3^{-2}h^{10}
Add the exponents 4 and 6.
4\times 3^{-2}h^{10}
Raise -2 to the power 2.
4\times \frac{1}{9}h^{10}
Raise 3 to the power -2.
\frac{4}{9}h^{10}
Multiply 4 times \frac{1}{9}.