Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-4f^{2}-3f-5-3f+8
Combine -2f^{2} and -2f^{2} to get -4f^{2}.
-4f^{2}-6f-5+8
Combine -3f and -3f to get -6f.
-4f^{2}-6f+3
Add -5 and 8 to get 3.
factor(-4f^{2}-3f-5-3f+8)
Combine -2f^{2} and -2f^{2} to get -4f^{2}.
factor(-4f^{2}-6f-5+8)
Combine -3f and -3f to get -6f.
factor(-4f^{2}-6f+3)
Add -5 and 8 to get 3.
-4f^{2}-6f+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
f=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-4\right)\times 3}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
f=\frac{-\left(-6\right)±\sqrt{36-4\left(-4\right)\times 3}}{2\left(-4\right)}
Square -6.
f=\frac{-\left(-6\right)±\sqrt{36+16\times 3}}{2\left(-4\right)}
Multiply -4 times -4.
f=\frac{-\left(-6\right)±\sqrt{36+48}}{2\left(-4\right)}
Multiply 16 times 3.
f=\frac{-\left(-6\right)±\sqrt{84}}{2\left(-4\right)}
Add 36 to 48.
f=\frac{-\left(-6\right)±2\sqrt{21}}{2\left(-4\right)}
Take the square root of 84.
f=\frac{6±2\sqrt{21}}{2\left(-4\right)}
The opposite of -6 is 6.
f=\frac{6±2\sqrt{21}}{-8}
Multiply 2 times -4.
f=\frac{2\sqrt{21}+6}{-8}
Now solve the equation f=\frac{6±2\sqrt{21}}{-8} when ± is plus. Add 6 to 2\sqrt{21}.
f=\frac{-\sqrt{21}-3}{4}
Divide 6+2\sqrt{21} by -8.
f=\frac{6-2\sqrt{21}}{-8}
Now solve the equation f=\frac{6±2\sqrt{21}}{-8} when ± is minus. Subtract 2\sqrt{21} from 6.
f=\frac{\sqrt{21}-3}{4}
Divide 6-2\sqrt{21} by -8.
-4f^{2}-6f+3=-4\left(f-\frac{-\sqrt{21}-3}{4}\right)\left(f-\frac{\sqrt{21}-3}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3-\sqrt{21}}{4} for x_{1} and \frac{-3+\sqrt{21}}{4} for x_{2}.