Evaluate
4b^{4}\left(b^{4}+4\right)
Expand
4b^{8}+16b^{4}
Share
Copied to clipboard
\left(-2\right)^{4}b^{4}+\left(-\frac{2}{3}b^{2}+\frac{1}{2}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Expand \left(-2b\right)^{4}.
16b^{4}+\left(-\frac{2}{3}b^{2}+\frac{1}{2}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Calculate -2 to the power of 4 and get 16.
16b^{4}+\left(-\frac{1}{6}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Combine -\frac{2}{3}b^{2} and \frac{1}{2}b^{2} to get -\frac{1}{6}b^{2}.
16b^{4}+\left(-\frac{1}{6}\right)^{2}\left(b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Expand \left(-\frac{1}{6}b^{2}\right)^{2}.
16b^{4}+\left(-\frac{1}{6}\right)^{2}b^{4}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
16b^{4}+\frac{1}{36}b^{4}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Calculate -\frac{1}{6} to the power of 2 and get \frac{1}{36}.
16b^{4}-\frac{1}{2}b^{4}b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Multiply \frac{1}{36} and -18 to get -\frac{1}{2}.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 3^{2}\left(b^{4}\right)^{2}
Expand \left(3b^{4}\right)^{2}.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 3^{2}b^{8}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 9b^{8}
Calculate 3 to the power of 2 and get 9.
16b^{4}-\frac{1}{2}b^{8}+\frac{9}{2}b^{8}
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
16b^{4}+4b^{8}
Combine -\frac{1}{2}b^{8} and \frac{9}{2}b^{8} to get 4b^{8}.
\left(-2\right)^{4}b^{4}+\left(-\frac{2}{3}b^{2}+\frac{1}{2}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Expand \left(-2b\right)^{4}.
16b^{4}+\left(-\frac{2}{3}b^{2}+\frac{1}{2}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Calculate -2 to the power of 4 and get 16.
16b^{4}+\left(-\frac{1}{6}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Combine -\frac{2}{3}b^{2} and \frac{1}{2}b^{2} to get -\frac{1}{6}b^{2}.
16b^{4}+\left(-\frac{1}{6}\right)^{2}\left(b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Expand \left(-\frac{1}{6}b^{2}\right)^{2}.
16b^{4}+\left(-\frac{1}{6}\right)^{2}b^{4}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
16b^{4}+\frac{1}{36}b^{4}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Calculate -\frac{1}{6} to the power of 2 and get \frac{1}{36}.
16b^{4}-\frac{1}{2}b^{4}b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Multiply \frac{1}{36} and -18 to get -\frac{1}{2}.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 3^{2}\left(b^{4}\right)^{2}
Expand \left(3b^{4}\right)^{2}.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 3^{2}b^{8}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 9b^{8}
Calculate 3 to the power of 2 and get 9.
16b^{4}-\frac{1}{2}b^{8}+\frac{9}{2}b^{8}
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
16b^{4}+4b^{8}
Combine -\frac{1}{2}b^{8} and \frac{9}{2}b^{8} to get 4b^{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}