Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-2\right)^{4}b^{4}+\left(-\frac{2}{3}b^{2}+\frac{1}{2}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Expand \left(-2b\right)^{4}.
16b^{4}+\left(-\frac{2}{3}b^{2}+\frac{1}{2}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Calculate -2 to the power of 4 and get 16.
16b^{4}+\left(-\frac{1}{6}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Combine -\frac{2}{3}b^{2} and \frac{1}{2}b^{2} to get -\frac{1}{6}b^{2}.
16b^{4}+\left(-\frac{1}{6}\right)^{2}\left(b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Expand \left(-\frac{1}{6}b^{2}\right)^{2}.
16b^{4}+\left(-\frac{1}{6}\right)^{2}b^{4}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
16b^{4}+\frac{1}{36}b^{4}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Calculate -\frac{1}{6} to the power of 2 and get \frac{1}{36}.
16b^{4}-\frac{1}{2}b^{4}b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Multiply \frac{1}{36} and -18 to get -\frac{1}{2}.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 3^{2}\left(b^{4}\right)^{2}
Expand \left(3b^{4}\right)^{2}.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 3^{2}b^{8}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 9b^{8}
Calculate 3 to the power of 2 and get 9.
16b^{4}-\frac{1}{2}b^{8}+\frac{9}{2}b^{8}
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
16b^{4}+4b^{8}
Combine -\frac{1}{2}b^{8} and \frac{9}{2}b^{8} to get 4b^{8}.
\left(-2\right)^{4}b^{4}+\left(-\frac{2}{3}b^{2}+\frac{1}{2}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Expand \left(-2b\right)^{4}.
16b^{4}+\left(-\frac{2}{3}b^{2}+\frac{1}{2}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Calculate -2 to the power of 4 and get 16.
16b^{4}+\left(-\frac{1}{6}b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Combine -\frac{2}{3}b^{2} and \frac{1}{2}b^{2} to get -\frac{1}{6}b^{2}.
16b^{4}+\left(-\frac{1}{6}\right)^{2}\left(b^{2}\right)^{2}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Expand \left(-\frac{1}{6}b^{2}\right)^{2}.
16b^{4}+\left(-\frac{1}{6}\right)^{2}b^{4}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
16b^{4}+\frac{1}{36}b^{4}\left(-18\right)b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Calculate -\frac{1}{6} to the power of 2 and get \frac{1}{36}.
16b^{4}-\frac{1}{2}b^{4}b^{4}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
Multiply \frac{1}{36} and -18 to get -\frac{1}{2}.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times \left(3b^{4}\right)^{2}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 3^{2}\left(b^{4}\right)^{2}
Expand \left(3b^{4}\right)^{2}.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 3^{2}b^{8}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
16b^{4}-\frac{1}{2}b^{8}+\frac{1}{2}\times 9b^{8}
Calculate 3 to the power of 2 and get 9.
16b^{4}-\frac{1}{2}b^{8}+\frac{9}{2}b^{8}
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
16b^{4}+4b^{8}
Combine -\frac{1}{2}b^{8} and \frac{9}{2}b^{8} to get 4b^{8}.