Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{-2ab\left(a-b\right)}{ab^{2}}\times \frac{1}{2\left(b-a\right)^{2}}
Divide -2ab by \frac{ab^{2}}{a-b} by multiplying -2ab by the reciprocal of \frac{ab^{2}}{a-b}.
\frac{-2\left(a-b\right)}{b}\times \frac{1}{2\left(b-a\right)^{2}}
Cancel out ab in both numerator and denominator.
\frac{-2\left(a-b\right)}{b\times 2\left(b-a\right)^{2}}
Multiply \frac{-2\left(a-b\right)}{b} times \frac{1}{2\left(b-a\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a-b\right)}{b\left(-a+b\right)^{2}}
Cancel out 2 in both numerator and denominator.
\frac{-a+b}{b\left(-a+b\right)^{2}}
To find the opposite of a-b, find the opposite of each term.
\frac{1}{b\left(-a+b\right)}
Cancel out -a+b in both numerator and denominator.
\frac{1}{-ba+b^{2}}
Use the distributive property to multiply b by -a+b.
\frac{-2ab\left(a-b\right)}{ab^{2}}\times \frac{1}{2\left(b-a\right)^{2}}
Divide -2ab by \frac{ab^{2}}{a-b} by multiplying -2ab by the reciprocal of \frac{ab^{2}}{a-b}.
\frac{-2\left(a-b\right)}{b}\times \frac{1}{2\left(b-a\right)^{2}}
Cancel out ab in both numerator and denominator.
\frac{-2\left(a-b\right)}{b\times 2\left(b-a\right)^{2}}
Multiply \frac{-2\left(a-b\right)}{b} times \frac{1}{2\left(b-a\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a-b\right)}{b\left(-a+b\right)^{2}}
Cancel out 2 in both numerator and denominator.
\frac{-a+b}{b\left(-a+b\right)^{2}}
To find the opposite of a-b, find the opposite of each term.
\frac{1}{b\left(-a+b\right)}
Cancel out -a+b in both numerator and denominator.
\frac{1}{-ba+b^{2}}
Use the distributive property to multiply b by -a+b.