Solve for a
a=3
a=0
Share
Copied to clipboard
\left(-2\right)^{2}a^{2}-4\times 1\times 3a=0
Expand \left(-2a\right)^{2}.
4a^{2}-4\times 1\times 3a=0
Calculate -2 to the power of 2 and get 4.
4a^{2}-4\times 3a=0
Multiply 4 and 1 to get 4.
4a^{2}-12a=0
Multiply 4 and 3 to get 12.
a\left(4a-12\right)=0
Factor out a.
a=0 a=3
To find equation solutions, solve a=0 and 4a-12=0.
\left(-2\right)^{2}a^{2}-4\times 1\times 3a=0
Expand \left(-2a\right)^{2}.
4a^{2}-4\times 1\times 3a=0
Calculate -2 to the power of 2 and get 4.
4a^{2}-4\times 3a=0
Multiply 4 and 1 to get 4.
4a^{2}-12a=0
Multiply 4 and 3 to get 12.
a=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-12\right)±12}{2\times 4}
Take the square root of \left(-12\right)^{2}.
a=\frac{12±12}{2\times 4}
The opposite of -12 is 12.
a=\frac{12±12}{8}
Multiply 2 times 4.
a=\frac{24}{8}
Now solve the equation a=\frac{12±12}{8} when ± is plus. Add 12 to 12.
a=3
Divide 24 by 8.
a=\frac{0}{8}
Now solve the equation a=\frac{12±12}{8} when ± is minus. Subtract 12 from 12.
a=0
Divide 0 by 8.
a=3 a=0
The equation is now solved.
\left(-2\right)^{2}a^{2}-4\times 1\times 3a=0
Expand \left(-2a\right)^{2}.
4a^{2}-4\times 1\times 3a=0
Calculate -2 to the power of 2 and get 4.
4a^{2}-4\times 3a=0
Multiply 4 and 1 to get 4.
4a^{2}-12a=0
Multiply 4 and 3 to get 12.
\frac{4a^{2}-12a}{4}=\frac{0}{4}
Divide both sides by 4.
a^{2}+\left(-\frac{12}{4}\right)a=\frac{0}{4}
Dividing by 4 undoes the multiplication by 4.
a^{2}-3a=\frac{0}{4}
Divide -12 by 4.
a^{2}-3a=0
Divide 0 by 4.
a^{2}-3a+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-3a+\frac{9}{4}=\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
\left(a-\frac{3}{2}\right)^{2}=\frac{9}{4}
Factor a^{2}-3a+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
a-\frac{3}{2}=\frac{3}{2} a-\frac{3}{2}=-\frac{3}{2}
Simplify.
a=3 a=0
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}