Evaluate
-72b^{7}a^{14}
Expand
-72b^{7}a^{14}
Share
Copied to clipboard
\left(-2\right)^{3}\left(a^{2}\right)^{3}b^{3}\times \left(3a^{4}b^{2}\right)^{2}
Expand \left(-2a^{2}b\right)^{3}.
\left(-2\right)^{3}a^{6}b^{3}\times \left(3a^{4}b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-8a^{6}b^{3}\times \left(3a^{4}b^{2}\right)^{2}
Calculate -2 to the power of 3 and get -8.
-8a^{6}b^{3}\times 3^{2}\left(a^{4}\right)^{2}\left(b^{2}\right)^{2}
Expand \left(3a^{4}b^{2}\right)^{2}.
-8a^{6}b^{3}\times 3^{2}a^{8}\left(b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
-8a^{6}b^{3}\times 3^{2}a^{8}b^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-8a^{6}b^{3}\times 9a^{8}b^{4}
Calculate 3 to the power of 2 and get 9.
-72a^{6}b^{3}a^{8}b^{4}
Multiply -8 and 9 to get -72.
-72a^{14}b^{3}b^{4}
To multiply powers of the same base, add their exponents. Add 6 and 8 to get 14.
-72a^{14}b^{7}
To multiply powers of the same base, add their exponents. Add 3 and 4 to get 7.
\left(-2\right)^{3}\left(a^{2}\right)^{3}b^{3}\times \left(3a^{4}b^{2}\right)^{2}
Expand \left(-2a^{2}b\right)^{3}.
\left(-2\right)^{3}a^{6}b^{3}\times \left(3a^{4}b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-8a^{6}b^{3}\times \left(3a^{4}b^{2}\right)^{2}
Calculate -2 to the power of 3 and get -8.
-8a^{6}b^{3}\times 3^{2}\left(a^{4}\right)^{2}\left(b^{2}\right)^{2}
Expand \left(3a^{4}b^{2}\right)^{2}.
-8a^{6}b^{3}\times 3^{2}a^{8}\left(b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 4 and 2 to get 8.
-8a^{6}b^{3}\times 3^{2}a^{8}b^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-8a^{6}b^{3}\times 9a^{8}b^{4}
Calculate 3 to the power of 2 and get 9.
-72a^{6}b^{3}a^{8}b^{4}
Multiply -8 and 9 to get -72.
-72a^{14}b^{3}b^{4}
To multiply powers of the same base, add their exponents. Add 6 and 8 to get 14.
-72a^{14}b^{7}
To multiply powers of the same base, add their exponents. Add 3 and 4 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}