Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

18+11x+x^{2}+18=0
Use the distributive property to multiply -2-x by -9-x and combine like terms.
36+11x+x^{2}=0
Add 18 and 18 to get 36.
x^{2}+11x+36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{11^{2}-4\times 36}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 11 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 36}}{2}
Square 11.
x=\frac{-11±\sqrt{121-144}}{2}
Multiply -4 times 36.
x=\frac{-11±\sqrt{-23}}{2}
Add 121 to -144.
x=\frac{-11±\sqrt{23}i}{2}
Take the square root of -23.
x=\frac{-11+\sqrt{23}i}{2}
Now solve the equation x=\frac{-11±\sqrt{23}i}{2} when ± is plus. Add -11 to i\sqrt{23}.
x=\frac{-\sqrt{23}i-11}{2}
Now solve the equation x=\frac{-11±\sqrt{23}i}{2} when ± is minus. Subtract i\sqrt{23} from -11.
x=\frac{-11+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i-11}{2}
The equation is now solved.
18+11x+x^{2}+18=0
Use the distributive property to multiply -2-x by -9-x and combine like terms.
36+11x+x^{2}=0
Add 18 and 18 to get 36.
11x+x^{2}=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
x^{2}+11x=-36
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=-36+\left(\frac{11}{2}\right)^{2}
Divide 11, the coefficient of the x term, by 2 to get \frac{11}{2}. Then add the square of \frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+11x+\frac{121}{4}=-36+\frac{121}{4}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+11x+\frac{121}{4}=-\frac{23}{4}
Add -36 to \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=-\frac{23}{4}
Factor x^{2}+11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Take the square root of both sides of the equation.
x+\frac{11}{2}=\frac{\sqrt{23}i}{2} x+\frac{11}{2}=-\frac{\sqrt{23}i}{2}
Simplify.
x=\frac{-11+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i-11}{2}
Subtract \frac{11}{2} from both sides of the equation.