Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
-8-|-\frac{1}{2}|+\frac{\left(\frac{1}{3}\right)^{-2}}{\left(3-\pi \right)^{0}}
Calculate -2 to the power of 3 and get -8.
-8-\frac{1}{2}+\frac{\left(\frac{1}{3}\right)^{-2}}{\left(3-\pi \right)^{0}}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{2} is \frac{1}{2}.
-\frac{17}{2}+\frac{\left(\frac{1}{3}\right)^{-2}}{\left(3-\pi \right)^{0}}
Subtract \frac{1}{2} from -8 to get -\frac{17}{2}.
-\frac{17}{2}+\frac{9}{\left(3-\pi \right)^{0}}
Calculate \frac{1}{3} to the power of -2 and get 9.
-\frac{17}{2}+\frac{9\times 2}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and \left(3-\pi \right)^{0} is 2. Multiply \frac{9}{\left(3-\pi \right)^{0}} times \frac{2}{2}.
\frac{-17+9\times 2}{2}
Since -\frac{17}{2} and \frac{9\times 2}{2} have the same denominator, add them by adding their numerators.
\frac{-17+18}{2}
Do the multiplications in -17+9\times 2.
\frac{1}{2}
Do the calculations in -17+18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}