Evaluate
\frac{13}{5}=2.6
Factor
\frac{13}{5} = 2\frac{3}{5} = 2.6
Share
Copied to clipboard
\left(-2\right)^{3}\left(\frac{\frac{7}{8}+\frac{4}{15}-1}{\frac{1}{6}-1-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 2 from 3 to get 1.
-8\left(\frac{\frac{7}{8}+\frac{4}{15}-1}{\frac{1}{6}-1-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Calculate -2 to the power of 3 and get -8.
-8\left(\frac{\frac{105}{120}+\frac{32}{120}-1}{\frac{1}{6}-1-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Least common multiple of 8 and 15 is 120. Convert \frac{7}{8} and \frac{4}{15} to fractions with denominator 120.
-8\left(\frac{\frac{105+32}{120}-1}{\frac{1}{6}-1-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Since \frac{105}{120} and \frac{32}{120} have the same denominator, add them by adding their numerators.
-8\left(\frac{\frac{137}{120}-1}{\frac{1}{6}-1-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Add 105 and 32 to get 137.
-8\left(\frac{\frac{137}{120}-\frac{120}{120}}{\frac{1}{6}-1-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Convert 1 to fraction \frac{120}{120}.
-8\left(\frac{\frac{137-120}{120}}{\frac{1}{6}-1-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Since \frac{137}{120} and \frac{120}{120} have the same denominator, subtract them by subtracting their numerators.
-8\left(\frac{\frac{17}{120}}{\frac{1}{6}-1-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Subtract 120 from 137 to get 17.
-8\left(\frac{\frac{17}{120}}{\frac{1}{6}-\frac{6}{6}-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Convert 1 to fraction \frac{6}{6}.
-8\left(\frac{\frac{17}{120}}{\frac{1-6}{6}-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Since \frac{1}{6} and \frac{6}{6} have the same denominator, subtract them by subtracting their numerators.
-8\left(\frac{\frac{17}{120}}{-\frac{5}{6}-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Subtract 6 from 1 to get -5.
-8\left(\frac{\frac{17}{120}}{-\frac{10}{12}-\frac{1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Least common multiple of 6 and 12 is 12. Convert -\frac{5}{6} and \frac{1}{12} to fractions with denominator 12.
-8\left(\frac{\frac{17}{120}}{\frac{-10-1}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Since -\frac{10}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
-8\left(\frac{\frac{17}{120}}{-\frac{11}{12}+\frac{1}{3}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Subtract 1 from -10 to get -11.
-8\left(\frac{\frac{17}{120}}{-\frac{11}{12}+\frac{4}{12}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Least common multiple of 12 and 3 is 12. Convert -\frac{11}{12} and \frac{1}{3} to fractions with denominator 12.
-8\left(\frac{\frac{17}{120}}{\frac{-11+4}{12}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Since -\frac{11}{12} and \frac{4}{12} have the same denominator, add them by adding their numerators.
-8\left(\frac{\frac{17}{120}}{-\frac{7}{12}-\frac{5}{6}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Add -11 and 4 to get -7.
-8\left(\frac{\frac{17}{120}}{-\frac{7}{12}-\frac{10}{12}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Least common multiple of 12 and 6 is 12. Convert -\frac{7}{12} and \frac{5}{6} to fractions with denominator 12.
-8\left(\frac{\frac{17}{120}}{\frac{-7-10}{12}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Since -\frac{7}{12} and \frac{10}{12} have the same denominator, subtract them by subtracting their numerators.
-8\left(\frac{\frac{17}{120}}{-\frac{17}{12}}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Subtract 10 from -7 to get -17.
-8\left(\frac{17}{120}\left(-\frac{12}{17}\right)+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Divide \frac{17}{120} by -\frac{17}{12} by multiplying \frac{17}{120} by the reciprocal of -\frac{17}{12}.
-8\left(\frac{17\left(-12\right)}{120\times 17}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Multiply \frac{17}{120} times -\frac{12}{17} by multiplying numerator times numerator and denominator times denominator.
-8\left(\frac{-12}{120}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Cancel out 17 in both numerator and denominator.
-8\left(-\frac{1}{10}+\left(-\frac{1}{2}\right)^{1}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Reduce the fraction \frac{-12}{120} to lowest terms by extracting and canceling out 12.
-8\left(-\frac{1}{10}-\frac{1}{2}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Calculate -\frac{1}{2} to the power of 1 and get -\frac{1}{2}.
-8\left(-\frac{1}{10}-\frac{5}{10}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Least common multiple of 10 and 2 is 10. Convert -\frac{1}{10} and \frac{1}{2} to fractions with denominator 10.
-8\left(\frac{-1-5}{10}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Since -\frac{1}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
-8\left(\frac{-6}{10}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Subtract 5 from -1 to get -6.
-8\left(-\frac{3}{5}+\frac{3}{5}-\frac{5}{8}+\frac{3}{10}\right)
Reduce the fraction \frac{-6}{10} to lowest terms by extracting and canceling out 2.
-8\left(-\frac{5}{8}+\frac{3}{10}\right)
Add -\frac{3}{5} and \frac{3}{5} to get 0.
-8\left(-\frac{25}{40}+\frac{12}{40}\right)
Least common multiple of 8 and 10 is 40. Convert -\frac{5}{8} and \frac{3}{10} to fractions with denominator 40.
-8\times \frac{-25+12}{40}
Since -\frac{25}{40} and \frac{12}{40} have the same denominator, add them by adding their numerators.
-8\left(-\frac{13}{40}\right)
Add -25 and 12 to get -13.
\frac{-8\left(-13\right)}{40}
Express -8\left(-\frac{13}{40}\right) as a single fraction.
\frac{104}{40}
Multiply -8 and -13 to get 104.
\frac{13}{5}
Reduce the fraction \frac{104}{40} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}