Evaluate
126-12\sqrt{55}\approx 37.005618155
Factor
6 {(21 - 2 \sqrt{55})} = 37.005618155
Share
Copied to clipboard
-10\left(\sqrt{5}\right)^{2}+8\sqrt{11}\sqrt{5}-20\sqrt{11}\sqrt{5}+16\left(\sqrt{11}\right)^{2}
Apply the distributive property by multiplying each term of -2\sqrt{5}-4\sqrt{11} by each term of 5\sqrt{5}-4\sqrt{11}.
-10\times 5+8\sqrt{11}\sqrt{5}-20\sqrt{11}\sqrt{5}+16\left(\sqrt{11}\right)^{2}
The square of \sqrt{5} is 5.
-50+8\sqrt{11}\sqrt{5}-20\sqrt{11}\sqrt{5}+16\left(\sqrt{11}\right)^{2}
Multiply -10 and 5 to get -50.
-50+8\sqrt{55}-20\sqrt{11}\sqrt{5}+16\left(\sqrt{11}\right)^{2}
To multiply \sqrt{11} and \sqrt{5}, multiply the numbers under the square root.
-50+8\sqrt{55}-20\sqrt{55}+16\left(\sqrt{11}\right)^{2}
To multiply \sqrt{11} and \sqrt{5}, multiply the numbers under the square root.
-50-12\sqrt{55}+16\left(\sqrt{11}\right)^{2}
Combine 8\sqrt{55} and -20\sqrt{55} to get -12\sqrt{55}.
-50-12\sqrt{55}+16\times 11
The square of \sqrt{11} is 11.
-50-12\sqrt{55}+176
Multiply 16 and 11 to get 176.
126-12\sqrt{55}
Add -50 and 176 to get 126.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}