Evaluate
\frac{16\sqrt{15}}{5}\approx 12.393546708
Share
Copied to clipboard
\frac{4^{2}}{\sqrt{\frac{1\times 3+2}{3}}}
Add -2 and 6 to get 4.
\frac{16}{\sqrt{\frac{1\times 3+2}{3}}}
Calculate 4 to the power of 2 and get 16.
\frac{16}{\sqrt{\frac{3+2}{3}}}
Multiply 1 and 3 to get 3.
\frac{16}{\sqrt{\frac{5}{3}}}
Add 3 and 2 to get 5.
\frac{16}{\frac{\sqrt{5}}{\sqrt{3}}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{16}{\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{16}{\frac{\sqrt{5}\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
\frac{16}{\frac{\sqrt{15}}{3}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{16\times 3}{\sqrt{15}}
Divide 16 by \frac{\sqrt{15}}{3} by multiplying 16 by the reciprocal of \frac{\sqrt{15}}{3}.
\frac{16\times 3\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{16\times 3}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{16\times 3\sqrt{15}}{15}
The square of \sqrt{15} is 15.
\frac{48\sqrt{15}}{15}
Multiply 16 and 3 to get 48.
\frac{16}{5}\sqrt{15}
Divide 48\sqrt{15} by 15 to get \frac{16}{5}\sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}