Evaluate
9-13i
Real Part
9
Share
Copied to clipboard
\left(-5-12i\right)i^{5}+\frac{13-26i}{3+2i}-\left(1-i\right)\left(1+i\right)
Calculate -2+3i to the power of 2 and get -5-12i.
\left(-5-12i\right)i+\frac{13-26i}{3+2i}-\left(1-i\right)\left(1+i\right)
Calculate i to the power of 5 and get i.
12-5i+\frac{13-26i}{3+2i}-\left(1-i\right)\left(1+i\right)
Multiply -5-12i and i to get 12-5i.
12-5i+\frac{\left(13-26i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}-\left(1-i\right)\left(1+i\right)
Multiply both numerator and denominator of \frac{13-26i}{3+2i} by the complex conjugate of the denominator, 3-2i.
12-5i+\frac{-13-104i}{13}-\left(1-i\right)\left(1+i\right)
Do the multiplications in \frac{\left(13-26i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
12-5i+\left(-1-8i\right)-\left(1-i\right)\left(1+i\right)
Divide -13-104i by 13 to get -1-8i.
11-13i-\left(1-i\right)\left(1+i\right)
Add 12-5i and -1-8i to get 11-13i.
11-13i-2
Multiply 1-i and 1+i to get 2.
9-13i
Subtract 2 from 11-13i to get 9-13i.
Re(\left(-5-12i\right)i^{5}+\frac{13-26i}{3+2i}-\left(1-i\right)\left(1+i\right))
Calculate -2+3i to the power of 2 and get -5-12i.
Re(\left(-5-12i\right)i+\frac{13-26i}{3+2i}-\left(1-i\right)\left(1+i\right))
Calculate i to the power of 5 and get i.
Re(12-5i+\frac{13-26i}{3+2i}-\left(1-i\right)\left(1+i\right))
Multiply -5-12i and i to get 12-5i.
Re(12-5i+\frac{\left(13-26i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}-\left(1-i\right)\left(1+i\right))
Multiply both numerator and denominator of \frac{13-26i}{3+2i} by the complex conjugate of the denominator, 3-2i.
Re(12-5i+\frac{-13-104i}{13}-\left(1-i\right)\left(1+i\right))
Do the multiplications in \frac{\left(13-26i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}.
Re(12-5i+\left(-1-8i\right)-\left(1-i\right)\left(1+i\right))
Divide -13-104i by 13 to get -1-8i.
Re(11-13i-\left(1-i\right)\left(1+i\right))
Add 12-5i and -1-8i to get 11-13i.
Re(11-13i-2)
Multiply 1-i and 1+i to get 2.
Re(9-13i)
Subtract 2 from 11-13i to get 9-13i.
9
The real part of 9-13i is 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}